The Use of Metarrestin for the Treatment of Pancreatic Cancer

This technology includes the use of the small molecule metarrestin (ML246) for the treatment of several types of pancreatic cancer. A subcellular structure called the perinucleolar compartment (PNC) is frequently found in metastatic tumors and cancer stem cells. Reduction of PNC prevalence followed by medicinal chemistry was used to identify metarrestin as a compound that reduces PNC prevalence without significantly impacting cell viability. In vitro and in vivo animal work have demonstrated desirable pharmacokinetic properties as well as a reduction in metastatic burden and extended survival.

Reporter Assay for Detection and Quantitation of Replication-Competent Gammaretrovirus

Gammaretroviral vectors were the first viral gene-therapy vectors to enter clinical trials and remain in use. One potential hazard associated with the use of such vectors is the presence of replication-competent retroviruses (RCR) in the vector preparations – either as a result of: 1) recombination events between the plasmids used for vector production, 2) interactions between the plasmids and endogenous retroviral sequences in the packaging cell lines, or 3) as a result of contamination in the laboratory.

Efficacious Fluorinated Cytidine Analog Cancer Therapeutic With Low Toxicity In Animal Studies

Cytidine analogs remain an area of active drug discovery and development, with five FDA approved drugs for the treatment of acute myeloid leukemia (AML). Two of these drugs, azacitidine (Vidaza®) and decitabine (Dacogen®), which were approved for myelodysplastic syndromes in 2004 and 2006, respectively, inhibit the DNA maintenance methyltransferase DNMT1. Because of the general toxicity of azacitidines, other nucleoside analogs are favored as therapeutics.

T Cell Receptors Targeting p53 Mutations for Cancer Immunotherapy and Adoptive Cell Therapy

The tumor protein p53 is a cell cycle regulator. It responds to DNA damage by triggering the DNA repair pathway and allowing cell division to occur or inducing cell growth arrest, cellular senescence, and/or apoptosis. p53 therefore acts as a tumor suppressor by preventing uncontrolled cell division. However, mutations in p53 that impair its cell cycle regulatory functions can induce uncontrolled cell division leading to cancer.

Micro-Dose Calibrator for Pre-clinical Radiotracer Assays

Molecular imaging is a disease-specific targeting modality that promises much more accurate diagnoses of serious diseases such as cancer and infections. Agents are being continually developed with a view to clinical translation, with several such therapies requiring measurement of very small doses. Currently, there is no way of accurately measuring small amounts of radioactivity used in many pre-clinical tracer studies, as on-the-market commercial dose calibrators measure at too high a dose range, typically at 10-1000 µCi and higher.

Methods of Producing Thymic Emigrants from Induced Pluripotent Stem Cells

Hematopoietic and pluripotent stem cells can be differentiated into T cells with potential clinical utility. Current approaches for in vitro T cell production rely on Notch signaling and artificial mimicry of thymic selection. However, these approaches result in unconventional or phenotypically aberrant T cells; which may lead to unpredictable behavior in clinical use. Thus, there exists a need for improved methods of generating conventional T cells in vitro from stem cells.
 

Self-Assembling Nanoparticles Composed of Transmembrane Peptides and Their Application for Specific Intra-Tumor Delivery of Anti-Cancer Drugs

Peptides corresponding to transmembrane domains of a number of integral proteins were discovered to spontaneously self-assemble in aqueous solutions into stable and remarkably uniform nanoparticles.  Researchers at the NCI’s Cancer and Inflammation Program have developed fully synthetic, peptide-based, virus-like nanoparticles capable of delivering cytotoxic, radioactive, and imaging agents. 

Structure and function of tumor-target self-assembling particles:

Photoactivatable Lipid-based Nanoparticles as a Vehicle for Dual Agent Delivery

The invention relates to novel lipid-based nanoparticles (liposomes) for use in targeted, on demand and on site drug delivery. The particles include a wall surrounding a cavity, wherein the wall is comprised of:

  1. A lipid bilayer comprising 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), dipalmitoylphosphatidylcholine (DPPC), and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000), and

A Specialized Tissue Collection Device for the Preservation and Transportation of Needle Biopsies

The ability to hold and transport tissue, especially needle biopsies in a pre-defined and controlled environment is critical for the preservation of biopsy samples in downstream analytic applications. Currently, tissue specimens are placed in open containers with variable, poorly controlled solutions applied to them, often in less than sterile conditions.  Evaluation of the tissue by examination through a stereoscope or similar approaches to determine adequacy is limited and requires manipulation of the tissue that can further damage the tissue.

An Anti-Viral Polypeptide: Griffithsin

Virus entry into a susceptible host cell is the first step in the formation of all viral diseases. Controlling viral infections by disrupting viral entry is advantageous for antibody-mediated neutralization by the host’s immune system and as a preventive and therapeutic antiviral strategy. Plant-derived carbohydrate-binding proteins (lectins) have emerged as a new class of antiviral biologics by taking advantage of a unique glycosylation pattern only found on the surface of viruses.