Peptide Mimetic Ligands of Polo-like Kinase 1 Polo Box Domain

Polo-like kinase 1 (Plk1) is a critical protein involved in regulation of mitosis, and aberrant expression of this kinase is found in various cancer types.  Inhibition of Plk1 is currently being pursued in pre-clinical drug development for novel anti-cancer therapeutics.  Plk1 contains an allosteric domain, known as the polo-box domain (PBD), that is responsible for localizing the kinase domain to mitotic structures through protein-protein interactions.  

Cancer-reactive T cells from Peripheral Blood

Adoptive cell therapy (ACT) using genetically engineered T-cell receptors (TCRs) is a promising cancer treatment. These TCRs target genetic mutations unique to patients and play an important role in tumor regression. However, mutation-reactive T-cells and their TCRs can be difficult to identify and isolate from patients. Therefore, we need more efficient methods of isolating mutation-reactive T-cells for use with ACT. 

Conserved Elements Vaccine for HIV

The development of an effective HIV vaccine has been an ongoing area of research. High variability in HIV-1 virus strains, however,  represents a major challenge.  Ideally, an effective candidate vaccine would provide protection against the majority of clades of HIV.  Two major hurdles to overcome are immunodominance and sequence diversity. Researchers at the National Cancer Institute (NCI) have developed a vaccine that overcomes these major hurdles by utilizing a strategy that identifies conserved regions of the virus and exploits them for use in a targeted therapy.

SLCO1B3 Genotyping to Predict a Survival Prognosis of Prostate Cancer

Steroid hormones have been implicated to play a fundamental role in the pathogenesis of prostate cancer. Polymorphisms in the genes that code for enzymes, or hormones involved in androgen regulatory pathway, reportedly influence risk for developing prostate cancer. Since many membrane transporters are modulators of steroid hormones absorption and tissue distribution, genetic polymorphisms in genes encoding these transporters may account for the risk of prostate cancer and the predicting of survival.

Methods of Producing Effective T-cell Populations Using Akt Inhibitors

Adoptive cell therapy (ACT) uses cancer reactive T-cells to effectively treat patients. However, several obstacles inhibit the successful use of ACT for cancer treatment.  Current approaches for the expansion of T-cells may produce T-cells with a terminally differentiated phenotype that is associated with diminished anti-tumor activity and poor capacity for long-term persistence. Thus, there is a need for improved methods of obtaining an isolated population of effective T-cells for ACT. 

Schweinfurthins and Uses Thereof

Neurofibromatosis type 1 (NF1) is a genetic disorder affecting 1 per 3000 individuals on average. Patients develop a variety of developmental benign and malignant pathologies. The most common tumors associated with NF1 are peripheral sheath tumors, including neurofibromas, optical gliomas, and malignant peripheral nerve sheath tumors.

T Cell Receptors Targeting KRAS Mutants for Cancer Immunotherapy/Adoptive Cell Therapy

Mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene are among the most common oncogenic drivers in human cancers, affecting nearly a third of all solid tumors. Point mutations in the KRAS gene most frequently affect amino acid position 12, resulting in the substitution of the native glycine (G) residue for other amino acids (e.g., aspartic acid (D), valine (V), cysteine (C) or arginine (R)).

NSAIDs that Assist the Treatment of Human Diseases

Non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to treat a variety of inflammatory conditions.  Many of these conditions, such as cancer or arthritis, require long term use of the NSAIDs due to the chronic nature of the disease.  However, the NSAIDs in current use have toxicities associated with their long-term use that hinder their use for these chronic conditions.    

Antibodies and CARs Targeting FLT3 for the Treatment of Acute Myeloid Leukemia and Acute Lymphoid Leukemia

Fms-like tyrosine kinase 3 (FLT3) is a cytokine receptor which belongs in the receptor tyrosine kinase class III.  FLT3 is expressed on the surface of many hematopoietic progenitor cells and plays an important role in hematopoietic stem/progenitor cell survival and proliferation.  It is often overexpressed in acute lymphoblastic leukemia (ALL) and is frequently mutated in acute myeloid leukemia (AML).  The standard therapies for ALL and AML are still suboptimal for many patients, especially pediatric.  In certain types of ALL or AML, the survival rate is less than 40 and