CODEFACS and LIRICS: Computation Tools for Identifying Cell-Type Specific Gene Expression Levels in Tumors and Other Types of Samples

The tumor microenvironment (TME) is a complex mixture of cell types whose interactions affect tumor growth and clinical outcome. Recent studies using fluorescence-activated cell sorting (FACS) and single-cell RNA sequencing (RNAseq) to elucidate tissue composition and cell-cell interactions in the TME led to improved biomarkers of patient response and new treatment opportunities. However, the use of FACS is limited to simultaneously measuring the expression of a few protein markers, whereas the use of single-cell RNAseq has been limited due to cost and scarcity of fresh tumor biopsies.

T Cell Receptor Targeting CD22 for the Treatment of Lymphomas and Leukemias

CD22 is a protein expressed by normal B cells and B-lymphoid malignancies. Its limited tissue expression pattern makes it a safe antigen for targeted therapies, such as T-cell Receptor (TCR)-T cell therapy. CD22-targeting therapies already on the market, mainly antibody-immunotoxin conjugates and chimeric antigen receptors (CAR)-T cells, have limitations such as resistance to treatment and/or side effects. Resistance mechanisms to the current CD22 therapies involve loss or modulation of target antigen on the cell surface.

Optical Microscope Software for Breast Cancer Diagnosis

The successful treatment of cancer is correlated with the early detection of the cancerous cells. Conventional cancer diagnosis is largely based on qualitative morphological criteria, but more accurate quantitative tests could greatly increase early detection of malignant cells. It has been observed that the spatial arrangement of DNA in the nucleus is altered in cancer cells in comparison to normal cells. Therefore, it is possible to distinguish malignant cells by mapping the position of labeled marker genes in the nucleus.

Device for Growing Mammalian Cells on EM Grids

Researchers at the NCI Center for Molecular Microscopy invented a device to hold transmission electron microscopy grids that allows adherent mammalian cells to be grown on it, as well as the 3D printing software to create the holder.  The TEM cell grid holder solves the difficulty of lifting the TEM grid out of a plate without bending or damaging the grid.  The holder can be reproduced in various sizes with 3D printing. 

Angiogenesis-Based Cancer Therapeutic

Vascular Endothelial Growth Factor-A (VEGF-A) is an angiogenic agent that drives blood vessel formation in solid tumors and other diseases, such as macular degeneration and diabetic retinopathy. Several therapies that target the ability of VEGF to stimulate angiogenesis have been approved. These therapies regulate VEGF-A activity by binding VEGF-A, thereby blocking VEGF-A from binding to its receptor on target cells. This technology utilizes a different approach to regulating VEGF-A activity by providing a VEGF-A protein antagonist that is produced by engineering native VEGF-A protein.

Chimeric Adaptor Proteins (CAPs) Containing a Linker for Activation of T Cells (LAT) and a Kinase Domain for Use in T Cell-Based Immunotherapy

T cell immunotherapy is used in the treatment of various pathologies – including cancers and infections. Current therapies employ chimeric antigen receptors (CARs) consisting of the intracellular fragment of CD3-zeta as the signaling domain with varied combinations of co-stimulatory, transmembrane, spacer/hinge, and extracellular targeting domains. While effective in treating hematological malignancies, CAR T cells need to be activated through T cell receptor (TCR) activation.