Optimized Nucleotide Sequence for RLIP-76 - A Membrane-associated Lipid Peroxidation Transporter for Radiation Poisoning

This technology includes a codon optimized expression vector for the high expression and production of RLIP-76 which can be used to provide protection from radiation. RLIP-76 is a multifunctional membrane protein that transports glutathione conjugates of electrophilic compounds outside the cell. The sequence was generated with codon bias alterations, reduction of secondary structure, lowering of GC content, and removal of cryptic elements that could affect expression in E.coli.

Treatment of primary hyperoxalurias with small molecule lactate dehydrogenase inhibitors such as WO2018005807A1

This technology includes the use of novel lactate dehydrogenase (LDH) inhibitors, including WO2018005807A1, for the treatment of primary hyperoxalurias (PHs). PHs are rare autosomal recessive disorders caused by overproduction of oxalate, leading to recurrent calcium oxalate kidney stone disease, and in some cases end-stage renal disease. One potential strategy to treat PHs is to reduce the production of oxalate by diminishing the activity of LDH, the proposed key enzyme responsible for converting glyoxylate to oxalate.

Formulation of a Modified Stable FGF-1 (TTHX1114) to Accelerate Corneal Endothelium Regeneration

This technology includes the use of a novel formulation for an engineered version of Fibroblast Growth Factor 1 (FGF1), TTHX1114, that can be used to accelerate regeneration of the corneal endothelium after surgical lesions. FGFs are well-established regulators of migration and proliferation of corneal endothelial cells (CECs).

SARS-CoV-2 Neutralizing Antibodies and Synthetic Nanobody Library Using a Humanized Llama Framework Region

NCATS has developed a highly diverse synthetic library that will allow for the rapid identification of novel nanobodies that bind to a wide arrange of target antigens. The humanized framework used to construct the library will facilitate the transition of lead candidates into patient studies. Several highly potent SARS-CoV-2 nanobodies (antibodies) have been identified and are available for further development.

NCATS is actively seeking licensing for the 1) a synthetic library and 2) the potent neutralizing antibodies with activity against SARS-CoV-2.

Monoclonal Antibodies for the Recognition of Oncogene Fusions and Alveolar Rhabdomyosarcoma (ARMS) Diagnosis

This technology includes monoclonal antibody (mAb) that binds to the junction region of the PAX3-FOXO1 and PAX7-FOXO1 fusion protein for the diagnosis of Alveolar Rhabdomyosarcoma (ARMS). Specifically, two monoclonal antibodies (PFM.1 and PFM.2) have been isolated that recognize the 92kDa bands found uniquely to the pediatric striated muscle tumors of the type Alveolar Rhabdomyosarcoma (ARMS) carrying the characteristic t(2;13)(q35;q14) or t(1;13)(p36;q14) chromosomal translocations.

A Novel Oxygen-induced Expression Vector for Production of Recombinant Proteins in Escherichia Coli

This technology includes a new method to induce recombinant protein expression in E. coli through the activating the SoxS promoter by molecular oxygen. We previously discovered that the SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration mainly to protect the bacteria from possible oxygen damage. We hypothesized that the 16-fold increase in the expression of this regulon make it possible candidate for inducing the expression of recombinant proteins.

Methods of Predicting Patient Treatment Response and Resistance via Single-Cell Transcriptomics of Their Tumors

Tailoring the best treatments to cancer patients remains a highly important endeavor in the oncology field. However, personalized treatment courses are challenging to determine, and technologies or methods that can successfully be employed for precision oncology are lacking.

Molecular Nanotags for Detection of Single Molecules

Biological nanoparticles, like extracellular vesicles (EVs), possess unique biological characteristics making them attractive therapeutic agents, targets, or disease biomarkers. However, their use is hindered by the lack of tools available to accurately detect, sort, and analyze. Flow cytometers are used to sort and study individual cells. But, they are unable to detect and sort nanomaterials smaller than 200 nanometers with single epitope sensitivity.

Optical Configuration Methods for Spectral Scatter Flow Cytometry

Multi-parameter flow cytometry has been extensively used in multiple disciplines of biological discoveries, including immunology and cancer research. However, the disadvantage of traditional flow cytometry platforms using excitation lasers and fluorescence detectors is spectral overlap when using multiple dyes on the same biological sample. Metaethical compensation of spectral overlap could only be effective to a certain degree. Mass cytometry is advantageous compared to flow cytometry but is pricey and requires highly skilled operators. 

Exo-Clean Technology for Purifying Extracellular Vesicle Preparations from Contaminants

Extracellular Vesicles (EVs), including exosomes and microvesicles, are nanometer-sized membranous vesicles that can carry different types of cargos, such as proteins, nucleic acids and metabolites. EVs are produced and released by most cell types. They act as biological mediators for intercellular communication via delivery of their cargos. This unique ability spurred translational research interest for targeted delivery of therapeutic molecules to treat a wide range of diseases. EVs also contain interesting information of their specific cellular origin.