Nucleic Acid Nanoparticles (NANP) and Methods of Using Same for Controlled Immunomodulation

The technology is directed to compositions and methods of designing nucleic acid nanoparticles (NANPs) composed entirely of DNA, RNA, or DNA and RNA to achieve desirable immunostimulation and decrease undesirable effects on the immune system by changing the composition of the NANP. Benefits of the invention include the desirable activation of the immune system by these particles to increase the efficacy of vaccines and immunotherapies.

Improved Personalized Cancer Immunotherapy

Scientists at NIH have identified a process to select highly tumor-reactive T cells from a patient tumor sample based on the expression of four specific T cell surface markers: programmed cell death protein 1 (PD-1; CD279), 4-1BB (CD137), T cell lg-and mucin-domain-containing molecule-3 (TIM-3), and/or lymphocyte activation gene 3 (LAG-3). After this enriched population of tumor fighting T cells, primarily tumor infiltrating lymphocytes (TIL), is selected and expanded to large quantities, it gets re-infused into the patient via an adoptive cell transfer (ACT) regimen.

Genetically Modified Hematopoietic Stem And Progenitor Cells (HSPCs) And Mesenchymal Cells As A Platform To Reduce Or Prevent Metastasis, Treat Autoimmune And Inflammatory Disorders, And Rebalance The Immune Milieu And Dysregulated Niches

Cancer cells can spread to various regions in the body in a process called metastasis which is associated with non-responsive to treatment and thus reduced survival. Identifying the markers of metastasis has been a major concern in the field of cancer diagnosis and therapy. Interestingly, research has shown that there is an increase in myeloid progenitors and myeloid cells at various stages of metastasis in an attempt by the immune system to  suppress cancer cells. This presents a promising technology for cancer immunotherapy.

Use of Acetalax for Treatment of Triple Negative Breast Cancer

Triple negative (progesterone receptor (PR)-, estrogen receptor (ER)-, human epidermal growth receptor 2 (HER2)-) breast cancer (TNBC) is an aggressive subtype that affects 15-20% of the 1.7 million cases of breast cancer occurring annually.  Currently, standard treatments of TNBC include cytotoxic chemotherapies, surgery, and radiation. However, TNBC readily becomes resistant to chemotherapy, and those with TNBC are more likely to have a recurrence or die within five years compared to those with other breast cancer types.

Dual Specific Anti-CD22 Anti-CD19 Bicistronic Chimeric Antigen Receptors (CARs)

Treatment of B-cell acute lymphoblastic leukemia (ALL) and lymphoma using chimeric antigen receptors (CARs) targeting B-cell surface protein CD19 has demonstrated impressive clinical results in children and young adults. Despite the promising results from CD19 CAR therapy, up to 40% of patients, who initially achieve remission, eventually relapse. Relapse or non-response to CD19-directed CAR therapy may be due to low or diminished CD19 expression. Such patients would be predicted to benefit from CAR therapies targeting other B-cell surface proteins, such as CD22.

Monoclonal Antibody Fragments for Targeting Therapeutics to Growth Plate Cartilage

A child's growth is dependent on the proper functioning of the growth plate, a specialized cartilage structure located at the ends of long bones and within the vertebrae. The primary function of the growth plate is to generate new cartilage, which is then converted into bone tissue and results in the lengthening of bones. Failure of the growth plate to function properly can result in short stature or sometimes a skeletal dysplasia, such as achondroplasia, in which the bones are not just short but also malformed.

Cancer Immunotherapy Using Virus-like Particles

One major challenge in the development of effective cancer therapies is a lack of universal, cancer specific markers in target cells. The current standard therapies rely on surgery, chemotherapy, and radiation therapy. Such procedures lead to a population of resistant cancer cells that makes further applications of chemotherapy/radiation therapy ineffective. Additionally, the systemic application of chemotherapy lacks specificity and has  off-target systemic effects that lead to adverse side effects.

Novel Cancer Immunotherapy: A T Cell Receptor That Specifically Recognizes Common KRAS Mutations

Several malignancies associated with a poor prognosis such as lung, pancreatic and colorectal cancers frequently harbor constitutively active KRAS mutants, which play a pivotal role in oncogenesis.  Currently, there are no potentially curative treatments against most mutant KRAS harboring cancers once they become metastatic and unresectable.  Despite intensive efforts to develop potent mutant KRAS inhibitors, none have shown a significant improvement to patients.