Preparation of Benzene-1,4-disulfonamide Derivatives Useful as Therapeutic TRPML1 Receptor Modulators for the Treatment of Lysosomal Dysfunction and Membrane Repair Disorders

This technology includes a series of novel benzene-1,4-disulfonamides that activate TRPML1 receptor. The TRPML1 receptor is a lysosomal Ca2+ channel that has been shown to be involved in controlling lysosome functions, among then the maintenance of the integrity of the plasma membrane and the modulation of autophagosome-lysosome fusion. The improved ability of the receptor to deliver Ca2+ ions to the cytosol had been correlated with its capacity to modulate autophagy and lysosome exocytosis.

Zika Virus NS-1 Inhibitors for the Treatment of Zika Virus Infection

This technology includes a new Zika virus NS-1 assay which was used for a compound screen. Because the NS-1 protein is synthesized only in the Zika virus replication stage, the inhibition of NS-1 protein level by compounds determined in this NS-1 assay indicates the inhibition of Zika virus replication in human cells. A total of 256 compounds have been identified as active compounds that inhibited NS-1 production in human cells that have the potential to be developed as new therapeutics for the treatment of infection with Zika virus.

Cell-based High-throughput High-content Assays Using Glycolytic Enzymes for Drug Discovery

This technology includes an assay capable of monitoring glycosome formation for use in high throughput screening (HTS). The reversible assembly and disassembly of a multi-enzyme complex, known as the glycosome, visualized by GFP-labeled human phosphofructokinase-1 (PFK1), is employed as an intracellular marker in human cells to screen small molecule libraries under high-content imaging in a high-throughput fashion. The glycolytic enzymes have been proposed to form a multi-enzyme complex in the cell.

Small Molecule Inhibitors of Clk and Dyrk Kinases for Potential Therapeutic Intervention of Down Syndrome, Alzheimer's Disease and Cancer

This technology includes small molecule inhibitors of the cdc2-like kinase (Clk) and Dyrk kinase which can restore splicing outcomes within many dysregulated splicing events potentially reversing phenotypes associated with diseases associated with abnormal splicing. The Clks regulate the alternative splicing of microtubule-associated protein tau and are implicated in frontotemporal dementia and Parkinson's disease through the phosphorylation of splicing factors (SF).

New Allosteric Inhibitors of C-Abl Tyrosine Kinase for the Treatment of Alzheimer’s and other Neurodegenerative Diseases

This technology includes a variety of structures that can effectively target the c-Abl myristate binding pocket with increased potency and brain permeability. C-Abl is a ubiquitous non-receptor tyrosine kinase involved in signal transduction. In addition to its classic function in leukemia pathogenesis, c-Abl kinase is also thought to play a role in neuronal health, whereby deregulation of c-Abl could be related to early neuronal dysfunction and cytoskeletal alterations.

Selective KCNH2-3.1 Inhibitors for the Treatment of Schizophrenia and Other CNS Disorders

This technology includes compounds, pharmaceutical compositions and methods of treating or preventing neurological or psychiatric disorders for which inhibiting KCNH2-3.1 containing potassium channels provides a therapeutic effect. Polymorphisms in the KCNH2 gene have been associated with altered cognitive function and schizophrenia. The KCNH2 gene encodes the protein which forms the human ether-a-go-go related (hERG) voltage-gated potassium channel 4, 5.

Quantum Dot Conjugated Virus Spike Protein for Cell-based Bio-sensing Systems and Drug Screening for the Prevention of Viral Infections

This technology includes a method to facilitate identification of drug targets that can prevent SARS-related viruses from entering human cells with ACE2 receptors on the plasma membrane. Surface binding to cellular ACE2 of the SARS-CoV-2 virus is the first step of infection for the disease COVID-19. The invention allows for visualization of cell binding and entry of a “quantum dot conjugated virus spike protein” (hereafter referred to as either a ‘QD-Spike conjugate’ or a ‘pseudo-virion’) and can be used to screen libraries of drugs that prevent/inhibit this cell entry.

Small Molecule BET Bromodomain Inhibitors for the Treatment of Cancer and Inflammatory Diseases

This technology includes a new chemical series of substituted bicyclic heteroaryl small molecules as potent bromodomain-containing protein BRD4 inhibitors used for the treatment of cancer and inflammatory diseases. The optimization led to compounds with good potency in enzymatic assay ( 100 nM) and in MV4-11 cell-based assay ( 1000 nM) as well as excellent early ADME properties. We also identified N-methyl 2 pyridone and N-methyl pyrrolopyridone are great replacements of di-methylisoxazole. This chemical series also exhibited good ADME profiles, including PK.

Discovery of DPTIP a Small Molecule Inhibitor of Neutral Sphingomyelinase 2 (nSMase2) for the Treatment of Neurodegenerative and Oncologic Diseases

This technology includes a newly discovered molecule 2,6-Dimethoxy-4-(5-Phenyl-4-Thiophen-2-yl-1H-Imidazol-2-yl)-Phenol (DPTIP) as potent inhibitor of neutral sphingomyelinase 2 (nSMase2), to be used for the treatment of neurodegenerative and oncologic diseases. This discovery was identified through unbiased screening of the National Center for Advancing Chemical Sciences (NCATS) chemical library using our human neutral sphingomyelinase assay.

Biofabrication of Skin Tissues with Dermis and Epidermis in Multiwell Plate Format to be Utilized for Chemical and Biologic Testing as well as Transplantation and Regenerative Medicine

This technology includes methods for the biofabrication of full thickness skin tissues in 12, 24, 48 and 96-well plates, using commercially available hardware to enable the implementation of large-scale toxicity and efficacy testing of chemical and biologics.