A Novel High-Throughput Assay for Identifying Zike Virus NS2B-NS3 Protease Inhibitors

This invention includes a novel high-throughput assay to identify orthosteric inhibitors blocking the Zika virus NS2B-NS3 protease. Pathogenic flaviviruses, including Zika, require the NS2B-NS3 protease for viral replication. There is currently an unmet need for specific antiviral therapeutics against the Zika virus. Preliminary screening using the NCGC Pharmaceutical Collection library identified a group of drugs including temoporfin, erythrosin B, niclosamide, and nitazoxanide that can significantly inhibit the interactions between NS2B and NS3.

Formulation of a Modified Stable FGF-1 (TTHX1114) to Accelerate Corneal Endothelium Regeneration

This technology includes the use of a novel formulation for an engineered version of Fibroblast Growth Factor 1 (FGF1), TTHX1114, that can be used to accelerate regeneration of the corneal endothelium after surgical lesions. FGFs are well-established regulators of migration and proliferation of corneal endothelial cells (CECs).

Discovery of imidazo[1,2-b]pyridazines with Anticancer Properties

This technology includes a series of imidazo[1,2-b]pyridazines that display potent inhibition of FLT3, as well as potent binding and activity against FLT3 tyrosine kinase domain and gatekeeper mutations. This chemotype exhibits superior anti-leukemic activity against the common clinically-relevant FLT3-mutant acute myeloid leukemia (AML) in vitro and in vivo. Tyrosine kinase domain mutations are a common cause of acquired resistance to FLT3 inhibitors used to treat FLT3-mutant AML.

Treatment of Acute Myeloid Leukemia (AML) with the Multi-kinase FLT3-IRAK1/4 Inhibitor, NCGC1481, to Avoid Adaptive Resistance

This technology includes the identification and use of a novel small molecule, NCGC1481, to inhibit both the FLT3 and IRAK1/4 kinase pathways for treating acute myeloid leukemia (AML). An activating mutation of the FMS-like receptor kinase 3 (FMT3) occurs in approximately 25% of AML cases. Consequently, FLT3 inhibitors (FLT3i) have a good initial clinical response, however patients relapse with FLT3i-resistance. This adaptive resistance following FLT3i treatment is partially conferred by activation of the IRAK1/4 kinase complex.

Process for Practical, Scalable, Commercially-viable Method for the Synthesis of Enantio-enriched Aminoalcohols, Including the Novel Antifungal VT-1129 Used to Treat Cryptococcal Meningitis

This technology relates to the discovery and development of a practical, scalable, and commercially viable method for the synthesis of the novel antifungal VT-1129. Cryptococcal meningitis (CM) is a fungal infection that is particularly prevalent in immune-compromised patients and can be treated by VT-1129. CM has a current estimated patient population of 1-1.25 million, predominately in sub-Saharan Africa and the developing world.

Identification and Use of a Novel Functionally Selective GHSR1a Ghrelin Receptor Inhibitor, including NCGC00538279, for the Treatment of Food and Chemical Addiction

This technology includes a chemical series, including the NCGC00538279 compound, that selectively activates the GHSR1a G-protein pathway for calcium mobilization while only partially activating the beta-arrestin-2 translocation pathway. The resulting chemical series may be therapeutically valuable for addictive disorders. Activation of the GHSR1a G-protein pathway promotes production and secretion of multiple hormones, including insulin, growth hormone, and IGF1. Activation of the beta-arrestin-2 pathway stimulates dopamine production and may mediate addictive behaviors.

A Group of Compounds that Activate AMP-activated protein kinase (AMPK) that may Treat Niemann-Pick Disease Type C (NPC)

This technology relates to the identification and use of a group of compounds that activate the AMP-activated protein kinase (AMPK) and also effectively reduce lysosomal cholesterol accumulation in patients with Niemann-Pick disease Type C (NPC). Clinical trials are currently underway to determine the efficacy of beta-cyclodextrin in treating patients with NPC. A potential mechanism has been proposed indicating that beta-cyclodextrin activated AMP-activated protein kinase, leading to restoration of autophagy in cells from NPC patients.

Creation of a High-density Screening Format and the Identification of Small Molecule Inhibitors of the SIX/EYA Interaction for the Treatment of Cancers

The technology includes the creation of a high-throughput assay and the identification and use of small molecules that inhibit the SIX/EYA interaction as a treatment for cancer. The Eya proteins are phosphatases that form a complex and are activated by the Six family of homeobox transcription factors. The interaction of Eya and Six mediates breast cancer cell transformation, migration, invasion and metastasis. An assay was designed to screen a large collection of compounds to identify inhibitors of the SIX/EYA interaction.

The NCGC BioPlanet: A Computational Algorithm to Display Networks in Three Dimensions

This technology includes a novel computational algorithm and software implementation to map and display biological pathways and their relationship on the surface of a globe in a three-dimensional space. Currently, biological pathways and genes are represented as two-dimensional networks, which is not effective for displaying complicated relationships between pathways and genes.

Repurposed Use of the Alkaloids Emetine and Cephaeline to Treat Zika Virus Infection

This technology includes the use of two related compounds, Emetine and Cephaeline, as a potent inhibitor of the Zika virus (ZIKV). Emetine and it's analog Cephaeline were identified in a high-throughput assay aimed at identifying anti-ZIKV compounds. Both Emetine and Cephaeline are potent inhibitors of ZIKV infection in cell culture, and Emeline is a potent inhibitor of ZIKV infection in a live mouse model.