Sensor for Real-time Detection of Plasma Metabolites Levels for the Diagnosis and Care of Metabolic Disorders

This technology includes the development of devices capable of real-time evaluation of metabolite levels for the treatment of numerous metabolic disorders, including hyperammonemia and aminoacidopathies. Currently, the monitoring of metabolite levels is done in a hospital setting with specialized mass spectrometry instrumentation. As a consequence, susceptible patients who are undergoing a crisis need to visit the hospital for testing to determine if there is a metabolite disturbance.

A Cell Line that Expresses secNluc and GFP to Recapitulate PMP22 Gene Expression for Studying Peripheral Neuropathy

This technology includes a cell line that expresses two reporters (a secreted luciferase, secNLuc, and GFP) in a pattern that recapitulates the endogenous expression of the peripheral myelin protein 22 (Pmp22) gene. Pmp22 is mainly expressed in the Schwann cells of the peripheral nervous system. Many neurological disorders are associated with aberrations in Schwann cells, including the most common inherited peripheral neuropathy known as Charcot-Marie-Tooth (CMT) disease. This cell line will permit the study of the regulatory elements behind the gene.

Creation and Use of Kinetin Derivatives for Treating RNA Missplicing Diseases Such as Familial Dysautonomia

This technology includes the creation and use of compounds, including kinetin derivatives, that improve mRNA splicing in a cell for the treatment of disorders associated with misspliced mRNA, including familial dysautonomia (FD). FD, the best-known and most common member of a group of congenital sensory and autonomic neuropathies, affects neuronal development and is associated with progressive neuronal degeneration. This disease is caused by mutations in the splicing of intron 20 of the IKMKAP gene that results in a unique pattern of tissue-specific exon skipping.

Patient-derived induced pluripotent stem cell (iPSC) lines for the study of lysosomal storage diseases (LSDs)

This technology includes the generation and use of human induced pluripotent stem cell (iPSC) lines that can be used to study and screen potential therapeutics for lysosomal storage diseases (LSDs). LSDs are a group of 50 genetic disorders caused by mutations in the genes encoding lysosomal enzymes and proteins. Although various therapeutic approaches exist, most cases of LSDs are not effectively treated due to a lack of therapeutics (including stem cells and recombinant proteins).

Treatment of primary hyperoxalurias with small molecule lactate dehydrogenase inhibitors such as WO2018005807A1

This technology includes the use of novel lactate dehydrogenase (LDH) inhibitors, including WO2018005807A1, for the treatment of primary hyperoxalurias (PHs). PHs are rare autosomal recessive disorders caused by overproduction of oxalate, leading to recurrent calcium oxalate kidney stone disease, and in some cases end-stage renal disease. One potential strategy to treat PHs is to reduce the production of oxalate by diminishing the activity of LDH, the proposed key enzyme responsible for converting glyoxylate to oxalate.

Use of the Ketamine Metabolite (R,6R)-hydroxynorketamine in Depression

This technology includes the identification and use of a ketamine metabolite, (2R,6R)-2-amino-2-(2-chlorophenyl)-6-hydroxycyclohexanone (HNK), for the treatment of depression. Ketamine is an NMDA receptor antagonist that exerts a rapid and sustained antidepressant and anti-suicidal effect. However, even low doses of ketamine has addictive and psychomimetic effects. The downstream metabolite, (2R,6R)-HNK, does not inhibit the NMDA receptor but recapitulates the antidepressant and anti-suicidal effect of ketamine.

Formulation of a Modified Stable FGF-1 (TTHX1114) to Accelerate Corneal Endothelium Regeneration

This technology includes the use of a novel formulation for an engineered version of Fibroblast Growth Factor 1 (FGF1), TTHX1114, that can be used to accelerate regeneration of the corneal endothelium after surgical lesions. FGFs are well-established regulators of migration and proliferation of corneal endothelial cells (CECs).

A Novel High-Throughput Assay for Identifying Zike Virus NS2B-NS3 Protease Inhibitors

This invention includes a novel high-throughput assay to identify orthosteric inhibitors blocking the Zika virus NS2B-NS3 protease. Pathogenic flaviviruses, including Zika, require the NS2B-NS3 protease for viral replication. There is currently an unmet need for specific antiviral therapeutics against the Zika virus. Preliminary screening using the NCGC Pharmaceutical Collection library identified a group of drugs including temoporfin, erythrosin B, niclosamide, and nitazoxanide that can significantly inhibit the interactions between NS2B and NS3.

Treatment of Acute Myeloid Leukemia (AML) with the Multi-kinase FLT3-IRAK1/4 Inhibitor, NCGC1481, to Avoid Adaptive Resistance

This technology includes the identification and use of a novel small molecule, NCGC1481, to inhibit both the FLT3 and IRAK1/4 kinase pathways for treating acute myeloid leukemia (AML). An activating mutation of the FMS-like receptor kinase 3 (FMT3) occurs in approximately 25% of AML cases. Consequently, FLT3 inhibitors (FLT3i) have a good initial clinical response, however patients relapse with FLT3i-resistance. This adaptive resistance following FLT3i treatment is partially conferred by activation of the IRAK1/4 kinase complex.

A Group of Compounds that Activate AMP-activated protein kinase (AMPK) that may Treat Niemann-Pick Disease Type C (NPC)

This technology relates to the identification and use of a group of compounds that activate the AMP-activated protein kinase (AMPK) and also effectively reduce lysosomal cholesterol accumulation in patients with Niemann-Pick disease Type C (NPC). Clinical trials are currently underway to determine the efficacy of beta-cyclodextrin in treating patients with NPC. A potential mechanism has been proposed indicating that beta-cyclodextrin activated AMP-activated protein kinase, leading to restoration of autophagy in cells from NPC patients.