Fast Acting Molecular Probes for Real-Time In Vivo Study of Disease and Therapeutics

This technology is for fast acting molecular probes made from a fluorescent quencher molecule, a fluorophore, an enzyme cleavable oligopeptide (for example targeted by protease) and FDA-approved polyethylene glycol (PEG) as well as associated methods to identify cell activity with these probes. Proteases regulate many cell processes such as inflammation as well as pathological processes in cancer and cardiovascular disease. High protease activity is associated with metastatic cancers. Proteases are also active in apoptosis, and tissue remodeling in cardiovascular disease.

Antagonists of Hyaluronan Signaling for Treatment of Airway Diseases

Airway diseases, such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major health burden worldwide. It is estimated, for example, that nearly 15.0% of the adult population in the US are affected with such diseases, and the economic cost burden is over $23 billion annually. Unfortunately, the current options for treatment of such diseases are quite limited, consisting only of bronchodilators and inhaled steroids. The need for a novel and more effective class of therapeutics agents is imperative.

Salen-Manganese Compounds for Therapy of Viral Infections

Salen-manganese compounds are synthetic, stable, low toxicity, low cost agents that may provide protection from immune reaction-related oxidative cell damage associated with many illnesses. In particular, oxidative cell damage has been associated with many viral infections including influenza. This invention demonstrates that treating mice with salen-manganese compounds, after lethal pandemic influenza virus infection, significantly enhances survival. Salen-manganese treatment also reduces lung pathology and also improved cellular recovery and repair.

Magnetic Resonance Arterial Wall Imaging Methods that Compensate for Patient Aperiodic Intrinsic Cardiac, Chest Wall, and Blood Flow-Induced Motions

The technology includes MRI methods, systems, and software for reliably imaging vasculature and vascular wall thickness while compensating for aperiodic intrinsic motion of a patient during respiration. To overcome the loss of the orthogonality due to uncompensated residual motions and after a lapse of time equal to the trigger delay commenced at the cardiac cycle, the system acquires multiple consecutive time-resolved images of the arterial wall. The cine images are processed offline and a wall thickness measurement is produced.

Glucocerebrosidase Non-inhibitory Chaperones for the Treatment of Gaucher Disease, Parkinson's Disease, and Other Proteinopathies

Gaucher disease is a rare lysosomal storage disease that is characterized by a loss of function of the glucocerebrosidase (GCase) enzyme, which results in a decreased ability to degrade its lipid substrate, glucocerebroside. The intracellular build up of this lipid causes a broad range of clinical manifestations, ranging from enlarged spleen/liver and anemia to neurodegeneration. In Gaucher disease, the loss of GCase function has been attributed to low levels of the protein in the lysosomal compartment, resulting from improper GCase folding and transport.

Antimalarial Inhibitors that Target the Plasmodial Surface Anion Channel (PSAC) Protein and Development of the PSAC Protein as Vaccine Targets

There are two related technologies, the first being small molecule inhibitors of the malarial plasmodial surface anion channel (PSAC) and the second being the PSAC protein itself as a vaccine candidate. The PSAC protein is produced by the malaria parasite within host erythrocytes and is crucial for mediating nutrient uptake. In vitro data show that the PSAC inhibitors are able to inhibit growth of malaria parasites, have high specificity, and low toxicity.

Novel Small Molecule Agonists of the Relaxin Receptor as Potential Therapy for Heart Failure and Fibrosis

The present invention is directed to novel small molecule agonists of the mammalian relaxin family receptor 1 (RXFP1), including human RXFP1. Activation of RXFP1 induces: 1) vasodilation due to up-regulation of the endothelin system; 2) extracellular matrix remodeling; 3) moderation of inflammation by reducing levels of inflammatory cytokines; and 4) angiogenesis. Small molecule agonists of RXFP1 may be useful in treating acute heart failure (AHF), scleroderma, fibrosis, other conditions associated with the biology of relaxin, and in improving reproductive health and wound healing.

Small Molecule MRS5474 with Anticonvulsant Activity for Treatment of Epilepsy

Adenosine modulates many physiological processes by activating specific adenosine receptors. These adenosine receptors play a critical role in the regulation of cellular signaling and are broadly distributed throughout the body. Thus, the ability to modulate adenosine receptor-mediated signaling is an attractive therapeutic strategy for a broad range of diseases. This technology relates to a group of compounds that display high affinity and specificity for the A1 adenosine receptor subtype.