Radiotracers for Imaging P-glycoprotein Transporter Function

This invention offers technology to help treat certain brain diseases, such as Alzheimer's disease and Parkinson's, and may lead to more effective and personalized treatments. P-glycoprotein transporter (P-gp) acts as a pump at the blood-brain barrier to exclude a wide range of xenobiotics (e.g., toxins, drugs, etc.) from the brain and is also expressed in a tumor in response to exposure to established/prospective chemotherapeutics (a phenomenon known as multidrug resistance; MDR).

Cell Based Immunotherapy

The invention hereby offered for licensing is in the field of Immunotherapy and more specifically in therapy of autoimmune diseases such as Type I diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosis and immune mediated allergies such as asthma as well as in transplantation-related disorders, such as graft acceptance and graft-versus-host-disease (GVHD).

Mouse Monoclonal Antibodies to Human Tristetraprolin (TTP)

TTP has been implicated in autoimmune and inflammatory diseases through its role as a regulator of the transcripts encoding several pro-inflammatory cytokines, including tumor necrosis factor alpha. However, it has been difficult to study endogenous TTP in man and other animals because it is expressed at very low levels in most cells and tissues, and because of the lack of mouse monoclonal antibodies directed at the human protein.

Small Molecule Activators of Human Pyruvate Kinase for Treatment of Cancer and Enzyme-Deficient Hemolytic Anemia

NIH investigators have discovered a series of small compounds with the potential to treat a variety of cancers as well as hemolytic anemia. Contrary to most cancer medications, these molecules can be non-toxic to normal cells because they target a protein specific to the metabolic pathways in tumors, thus representing a significant clinical advantage over less-specific chemotherapeutics.

A Novel System for Producing Infectious Hepatitis C Virus (HCV) Virions and Development of a Novel Reporter System for Studying HCV Entry

HCV has infected an estimated 3% of the world population in whom viral infection persists for more than two third of the cases, often resulting in life-threatening complications. The standard of care (pegylated interferon alpha-2 plus ribavirin) is efficient in only 50% of treated patients, costly and has numerous side effects. In addition, viral resistance to newly developed drugs -- targeting viral protease or RNA polymerase -- has been described, but no vaccine is yet available.

Self-Expanding Stent for Valve Replacement

Aortic stenosis and aortic regurgitation are the most common types of aortic valvular diseases. Such diseased aortic valves in the body are traditionally replaced with valve prosthesis by an open surgical implantation. Available for licensing and commercial development is intellectual property covering stents for use with valve prostheses. As illustrated below, one possible embodiment of the invention includes a self-expandable stent with an elastic tubular latticework having radial and longitudinal direction.

Truncated Methanocarba Adenosine Derivatives as A3 Adenosine Receptor Antagonists

Novel A3 adenosine antagonists available for licensing. A3 receptors are particularly highly expressed in inflammatory cells, making it a potentially desirable target for inflammatory diseases. This technology relates to highly specific antagonists and partial agonists of A3 adenosine receptors, which are negatively coupled to adenylate cyclase and have been broadly implicated in inflammation, cardiovascular disease, endocrine conditions and cancer. Further, A3 adenosine receptors have been implicated in asthma and glaucoma.

A Locking Device for Permanently Securing Surgical Suture Loops

This technology relates to a device that can be used to non-invasively secure surgical suture loops when combined with a percutaneous delivery system. It has been shown to be effective in correcting mitral valve regurgitation (MVR) in an animal model. During the procedure, a guidewire is percutaneously conveyed to the atrium of the heart and is used to secure the "cerclage" suture encircling the mitral valve annulus, which is delivered using a delivery catheter.

Therapeutic Peptide Treatment for Dyslipidemic and Vascular Disorders

This invention is directed to use of certain peptide analogs comprising multiple amphipathic helical domains that are able to promote cellular lipid efflux and stimulate lipoprotein lipase activity. As a result, administration of invention peptides lead to reduced incidences of hypertriglyceridemia without inducing toxicity. Existing peptides that stimulate efflux of lipids from cells exhibit unacceptably high toxicity. Invention peptides are superior to existing peptides and can also be used to treat or prevent a vast range of vascular diseases, and their dyslipidemic precursors.

Multilayered RF Coil System for Improving Transmit B1 Field Homogeneity in High-Field MRI

Available for licensing and commercial development is a multilayered radio-frequency (RF) coil system for improving the transmit B1 field homogeneity for magnetic resonance imaging (MRI) at high field strengths. The current invention aims at manipulating the inhomogeneous profile of the transmit B1 field, which causes MR images to become less uniform as the magnetic field strength is increased, by utilizing an inner array of RF elements (e.g. surface coils) within and coupled to an outer transmit unit (e.g. a birdcage coil or other volume coil).