Novel Magnetic Resonance Spectroscopy (MRS) Technique to Quantify Brain Metabolites

With respect to quantification of metabolites in the brain, conventional methods of magnetic resonance spectroscopy (MRS) yield results that are highly variable and highly dependent on the sequence type being applied. This invention describes a novel MRS technique that involves preparing longitudinal steady states at different flip angles using trains of RF pulses interspersed with field gradients to quantify metabolites.

Novel Fourth Human Ebolavirus species, <em>Bundibugyo ebolavirus</em> – Compositions and Methods for Vaccine, Therapeutics and Highly Sensitive Diagnostic Assay Development

Ebola Virus Disease (EVD) is a disease caused by infection with viruses from the family Filoviridae, genus Ebolavirus. Ebola virus was first discovered in 1976 in Africa and has since caused numerous outbreaks throughout the continent including the largest outbreak in history in West Africa during 2014-2016. Previously, there were three identified Ebolavirus species which were known to cause disease in humans: Ebola virus (Zaire ebolavirus); Sudan virus (Sudan ebolavirus); and Tai Forest virus (Tai Forest ebolavirus).

Real-time RT-PCR Assay for Rapid, Highly Sensitive and Specific Detection of Human Enterovirus D68 (EV-D68)

Human Enterovirus D68 (EV-D68) is a non-polio enterovirus that can cause mild to severe respiratory illness, especially in infants and children with asthma. Since its identification, every year EV-D68 has been detected sporadically throughout the world. The US experienced a nationwide outbreak of EV-D68 associated with a particularly severe respiratory illness from mid-August to early November 2014, with 1,153 confirmed cases in 49 states and the District of Columbia. Although various established detection methods are available for EV-D68, enteroviruses evolve rapidly.

Novel UNEX Buffer and Disk for Safe Storage and Transport at Ambient Temperatures of Clinical Specimens for Molecular Testing of Pathogens

The development of genomic approaches and nucleic acid based techniques has led to a large number of biological samples, including DNA, RNA, cells, tissues, and environmental samples that require storage. Typically, microbial DNA and RNA samples are stored long-term in laboratory freezers at temperatures ranging from -20°C to -196°C, the lower ranges utilizing liquid nitrogen. This often requires the use of several freezer boxes that can take up space and become difficult to sort through.

Respirator Protection Devices and Methods to Detect and Remove Toxic Gases from the Air - Cobinamide Encapsulated Silica-based Materials for Respirator Canisters

A respirator protects the wearer from inhaling dangerous substances, such as chemicals and infectious particles. CDC developed devices and methods to detect and remove chemicals such as hydrogen cyanide, cyanogen, hydrogen sulfide, nitrite, and nitric oxide from the air for those wearing respirators. Cobinamide (a Vitamin B12 analog with a high affinity to cyanide) molecules are immobilized within a silica matrix that allows for the infiltration and containment of gaseous chemicals.

Method to Remove Mycoplasma Contamination from Virus Stocks

Mycoplasma are a form of bacteria that are commonly found as contaminants in cell cultures. They adversely affect cell line growth rates and viral vaccine production. Mycoplasma contamination is a challenge for the vaccine industry and virology researchers. Current commercial reagents or kits only temporarily inhibit the growth of mycoplasma, but cannot eliminate the contaminants.

Novel Peptide of <em>Streptococcus pneumoniae</em> Surface Adhesion A (PsaA) Protein Associated with Adherence and Uses Thereof – for Vaccine Candidate, Therapeutic and Diagnostic Development

Streptococcus pneumoniae (S. pneumonia), bacteria commonly referred to as pneumococcus, are a significant cause of disease resulting in 1.5 million deaths every year worldwide according to the World Health Organization. The major types of pneumococcal disease are pneumonia (lung infection), bacteremia (bloodstream infection), and meningitis (infection of the tissue covering of the brain and spinal cord). Less severe pneumococcal illnesses include ear and sinus infections.

New Anti-Influenza Virus Neuraminidase 9 (N9) Monoclonal Antibody – for Prevention or Treatment of H7N9 Influenza (Flu) A with Less Likelihood of Drug Resistance

H7N9 influenza viruses are predominately avian (bird) pathogens, however, since 2013, they have infected more than 1500 humans with a mortality rate of nearly 40% in confirmed cases. H7N9 viruses continue to be a threat to public health. Treatment for people infected with H7N9-subtype influenza A (H7N9) commonly includes the use of drugs that inhibit neuraminidase, a protein found on the virus’ surface. However, like other influenza viruses, H7N9 can become resistant to these drugs.

The CDC 2009 Influenza A H1N1 (Flu) Pandemic Real-time RT-PCR Panel including Pandemic Influenza A and Pandemic H1 Assays

CDC researchers have developed probes and primers for detecting the 2009 pandemic influenza A H1N1 virus in patient samples using real-time reverse transcription-polymerase chain reaction (rRT-PCR) methods. These primers and probes were originally developed in 2009 and were cleared by the FDA as part of a domestic human diagnostic testing panel in June 2010. These were also updated to increase specificity and/or sensitivity of the detection methods.

Simple and Rapid Loop-Mediated Isothermal Amplification (LAMP)-based Assay for <em>Mycoplasma pneumoniae</em> Detection

Mycoplasma pneumoniae (M. pneumonia) can cause several different types of infection including chest colds and pneumonia. M. pneumoniae is a leading cause of community-acquired pneumonia. People of all ages are at risk for getting M. pneumonia infection, but it is most common among young adults and school-aged children. Current methods of detecting this agent are laborious and time consuming, so testing is not usually performed. However, knowing whether someone has M. pneumoniae infection is important for choosing the right antibiotic for treatment.