Erythroid Progenitor Cell Line for Hematological Disease Applications

Plasmodium vivax (malaria) is a significant health concern in many parts of Asia, Latin America, North Africa, and the Middle East. There is a lack of continuous culture systems for this pathogen. The subject technology is an erythroid progenitor continuous cell line (termed CD36E) identified by erythroid markers CD36, CD33, CD44, CD71, CD235, and globoside. These CD36E cells are heterozygous for Fya and Fyb (Duffy antigen). Due to recent evidence that Plasmodium vivax (P. vivax) can infect erythroid progenitor cells (reference: YX Ru et al.

Moraxella Catarrhalis Lipooligosaccharide Based Conjugate Vaccines for the Prevention of Otitis Media and Respiratory Infections

Moraxella catarrhalis is one of the three leading causative agents of otitis media in children. This is due in part to the current immunizations of children with Streptococcus pneumoniae polysaccharide and conjugate vaccines to prevent otitis media. The proportion of otitis media caused by pneumococcal strains covered by the vaccines have decreased while those caused by Moraxella catarrhalis and nontypeable Haemophilus influenzae have significantly increased.

Parvovirus B19 Codon Optimized Structural Proteins for Vaccine and Diagnostic Applications

Parvovirus B19 (B19V) is the only known pathogenic human parvovirus. Infection by this viral pathogen can cause transient aplastic crisis in individuals with high red cell turnover, pure red cell aplasia in immunosuppressed patients, and hydrops fetalis during pregnancy. In children, B19V most commonly causes erythema infectiosum, or fifth's disease. Infection can also cause arthropathy and arthralgia. The virus is very erythrotropic, targeting human erythroid (red blood) progenitors found in the blood, bone marrow, and fetal liver.

Software System for Processing and Analysis of Multi-dimensional NMR Data

Available for licensing is a software system useful in applications involving nuclear magnetic resonance (NMR). The software system, called NMRPipe, is written in the C programming language, and makes use of the TCL/TK scripting environment. The system includes over 500 modules for processing and analyzing experimental data of one to four dimensions collected on NMR spectrometers. The system exploits the UNIX computer operating system facilities of pipelines and scripts to link modules in a highly flexible, user-definable manner.

Novel Antigen for Use as Vaccine Against Nematode Infection

This invention describes a new vaccine against Strongyoides stercoralis, which establishes a parasitic infection that affects an estimated 100-200 million people worldwide. The potential for fatal disease associated with S. stercoralis infection and the difficulty in treating hyperinfection underscores the need for prophylactic vaccines against the disease. This vaccine uses S. stercoralis immunoreactive antigen (SsIR); a novel antigen capable of providing 70-90 % protection for mice immunized with the antigen.

N-Methanocarba Adenosine Derivatives and Their Dendrimer Conjugates as A3 Receptor Agonists

This technology relates to specific (N)-methanocarba adenine nucleosides that have been developed and dendrimers that connect these compounds to create molecules with multiple targets. Dendrimers are essentially repeated molecular branches presenting the core receptor-binding molecules. The compounds synthesized function as agonists and antagonists of a receptor of the G-protein coupled receptor (GPCR) superfamily.

A Novel Scaffold for Multivalent Display of Ligands

Multivalent interactions are important in cell attachment, wound healing and immune responses. Such interactions are associated with cancer metastasis, blood clotting and the generation of antibodies from a vaccination. Mimicking multivalent interactions on a synthetic scaffold is challenging especially when large numbers of ligands (such as 5 or more) need to be displayed. There are numerous synthetic scaffolds that have been developed, but there are significant limitations that remain.

System and Method for Producing Nondiffracting Light Sheets that Improves the Performance of Selective Plane Illumination Microscopy (SPIM)

The technology offered for licensing relates to a system and method of producing nondiffracting beams of light that spatially overlap, but do not interfere with each other when intersecting the detection plane of an optical arrangement. The system includes an illumination source (i.e.

Method of Producing Immortalized Primary Human Keratinocytes for HPV Investigation, Testing of Therapeutics, and Skin Graft Generation

One of the major limitations of using cultured keratinocytes for research studies is that primary keratinocytes senesce after a few passages. Keratinocytes from specific anatomical sites are also difficult to culture. Scientists at the NIH have demonstrated that primary keratinocytes, from several anatomical sites, when treated with a small-molecule inhibitor of the ROCK protein maintain a proliferative state and become immortal without genetic modification to the cells.

Superresolution Microscopy via Azicon Beam Polarization Devices

The technology offered for licensing pertains to novel polarizers that produce tangentially and radially polarized beams. The polarizers and polarizing beam splitter of the technology include one or more pairs of axicons (also known as conical lenses) that are configured to separate an input beam into a radially polarized component and a tangentially (or azimuthally) polarized component. A second axicon pair can be positioned to recombine the tangentially polarized component so as to provide a more uniform beam intensity.