Use of Anti-CD47 Antibodies for the Treatment of Cancer

High expression of CD47, a cell surface receptor on several types of cancer cells, has been identified as a ‘don’t eat me signal’ that inhibits their killing by macrophages or NK cells. Conversely, the CD47 antibody B6H12 that blocks SIRPα binding enhances macrophage-dependent clearance of tumors in several mouse models, although others have shown that such clearance can be independent of SIRPα signaling.

Eye Tracking Application in Computer Aided Diagnosis and Image Processing in Radiology

Medical imaging is an important resource for early diagnostic, detection, and effective treatment of cancers. However, the screening and review processes for radiologists have been shown to overlook a certain percentage of potentially cancerous image features. Such review errors may result in misdiagnosis and failure to identify tumors. These errors result from human fallibility, fatigue, and from the complexity of visual search required.

IL7Rα-Specific Antibody for Treating Acute Lymphoblastic Leukemia (ALL)

Acute lymphoblastic leukemia (ALL) is the most common cancer in children with approximately 3,250 new cases occurring per year in the United States. About 20% of cases are refractory to current treatment protocols and there is a desperate need for targeted therapies that do not result in adverse side effects such as cognitive impairment. 

Methods of preventing tissue ischemia

The National Cancer Institute's Laboratory of Pathology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize therapeutics targeting vasodialation.

Nitric oxide (NO) plays an important role as a major intrinsic vasodilator, and increases blood flow to tissues and organs. Disruption of this process leads to peripheral vascular disease, ischemic heart disease, stroke, vascular insufficiency associated with diabetes, and many more diseases that are significant.

Synthesis and Characterization of Bismuth Beads for Trans Arterial Chemo Embolization Under Computed Tomography (CT) Guidance

Existing microsphere technologies are used as therapy for certain cancers. The therapy is by way of occlusion, when the microspheres are delivered into blood vessels that feed a tumor. The physical dimensions of the microspheres occlude the blood supply and thus, killing the tumor. Some microspheres have also been modified to bind protein, elute drugs, and reduce inflammatory reactions as part of the therapy. However, one technical short-coming of existing microsphere technology is a limited capability to be visualized in real-time.

Neoantigen T Cell Therapy with Neoantigen Vaccination as a Combination Immunotherapy Against Cancer

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes autologous, antitumor T cells to attack tumors through recognition of tumor-specific mutations, or neoantigens. A major hurdle in the development of ACT is the exhausted phenotype exhibited by many neoantigen-specific T cells, which limits their efficacy and prevents a sustained immune response. 

Antisense Oligonucleotides against Cancer Cell Migration and Invasion

Advanced stage cancers are typically marked by metastases of the primary cancer to secondary sites such as lungs, liver, and bones. Such metastatic cancers result in strikingly low 5-year survival rates, underscoring the need for novel therapeutics. For example, bone metastasis of primary breast cancer has a 5-year survival rate of 13%, lung cancer only 1%. There is a need for targeted therapy options specific to metastases. One approach to targeting metastases is to reduce cancer cell migration and invasion.