Transcatheter MRI-guided Implantable Cavopulmonary Bypass Endograft for the Treatment of Congenital Heart Disease

This technology includes a catheter-delivered endograft designed to treat congenital heart disease without surgery. The specific surgical procedure averted is cavopulmonary bypass graft. The key innovations are features to effect distal end-to-side anastomosis and proximal end-to-end anastomosis without surgery. The system operates under X-ray and MRI guidance.

Immunoassay-derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of 6 protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Mass Spectrometry Derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD) and myocardial infarction (MI). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Multiview Super-resolution Microscopy System and Methods for Research and Diagnostic Applications

This technology includes a microscopy technique that combines the strengths of multiview imaging (better resolution isotropy, better depth penetration) with resolution-improving structured illumination microscopy (SIM). The proposed microscope uses a sharp line-focused illumination structure to excite and confocally detect sample fluorescence from 3 complementary views.

Computational Alleviation of Depth-dependent Degradation in Fluorescence Images

This technology includes an approach that dramatically lessens the effects of depth-dependent degradation in fluorescence microscopy images. First, we develop realistic ‘forward models’ of the depth dependent degradation and apply these forward models to shallow imaging planes that are expected to be relatively free of such degradation. In doing so, we create synthetic image planes that resemble the degradation found in deeper imaging planes. Second, we train neural networks to remove the effect of such degradation, using the shallow images as ground truth.

Improvement of Axial Resolution via Photoswitching and Standing Wave Illumination

This technology includes an illuminator and reflector that enables flexible standing wave illumination on an inverted microscope stand, and procedures for using such illumination to improve axial resolution in confocal or instant SIM imaging systems. The axial resolution in conventional fluorescence microscopy is typically limited by diffraction to ~700 nm. This method that improves axial resolution ~7-fold over the diffraction limit, and that can be applied to any fluorescence microscope.

Paper Strip Tool with Gold Nanoparticle Conjugated Probes for Rapid Detection of Pathogens in Stool

This technology includes a paper strip tool that may be used at the point-of care to detect the presence of a multiplex of pathogen nucleic acid sequences in stool without the need for molecular amplification, laboratory or instrumentation. This invention can be used to rapidly and inexpensively detect gastrointestinal and diarrheal disease in order to guide treatment.

Real-time Monitoring of In Vivo Free Radical Scavengers Through Hyperpolarized [1-13C] N-acetyl Cysteine as a Diagnostic and Disease Monitoring Tool

This technology includes synthesized demonstrated [1-13C] NAC as a promising novel probe for hyperpolarized 13C MRI methodologies which could provide diagnostic, and evaluation of response to treatment in various cancers and neurological diseases. N-acetyl cysteine (NAC) is a widely used therapeutic and involved to stimulate glutathione synthesis. Glutathione elevates detoxification and works directly as a free radical scavenger. In vivo hyperpolarized NAC was broadly distributed throughout the body.

Isotopes of Alpha Ketoglutarate and Related Compounds for Hyperpolarized MRI Imaging

This technology includes 1-13C-ketoglutarate which can be used for imaging the conversion to hydroxyglutarate (HG) or Gln in cancer cells with an IDH1 mutations by hyperpolarized MRI. The ability to detect the status of IDH1 mutations is clinically prognostic for multiple cancers. These exciting observations are limited by two factors, the major one being that the natural abundance of 13C at position C5 overlaps with 1-13C-2-hydroxyglutarate peak, which limits the sensitivity of analysis and prevents simultaneous observations of HG and Gln formation.

Blocking CD38 using Daratumumab F(ab)2 to Protect Natural Killer Cells from Daratumumab-induced Apoptosis and Cell Death for the Treatment of Multiple Myeloma

This technology includes the method of blocking CD38 in expanded natural killer (NK) cell therapy in combination with daratumumab in patients with multiple myeloma. Our in vitro studies have already confirmed the addition of NK cells to myeloma cells that have been exposed to daratumumab enhances myeloma killing compared to single agent treatment.