High Relaxivity Mulitivalent Gadolinium on a Peptide Scaffold for Targeted MRI Applications in Disease Diagnosis

This technology includes a peptide containing alternating Alanine and Lys(DOTA-Gd) residues can be used to increase the MRI relaxivity of a peptide. The low molecular weight construct can be appended to proteins, antibodies and peptides to increase MRI signals. This approach offers advantages over previous dendrimeric constructs.

Novel Bicuspid Transcatheter Heart Valve Frame and Leaflets for Mitro Valve Implantation

This technology includes a pair of subsystems for a novel transcatheter bicuspid valve (frame and leaflets) intended for implantation in the mitral position. It is simple, it overcomes key limitations to transcatheter bicuspid mitral valve implants, and it overcomes key limitations to transcatheter tricuspid mitral valve implants.

Single cell profiling of chromatin Occupancy and RNAs Sequencing (scPCOR-seq)

Cell-to-cell heterogeneity in gene expression is a widespread phenomenon, and may play important roles in cellular differentiation, function and disease development. Human Cell Atlas aims to profile gene expression in every single human cells. Recent studies have implicated a potential role of chromatin in the heterogeneity in gene expression. Understanding the mechanisms of cellular heterogeneity requires simultaneous measurement of RNA and occupancy of histone modifications and transcription factors on chromatin due to their critical roles in transcriptional regulation.

Expanded Claims for Transcatheter Coronary Sinus Mitral Valve Annuloplasty Procedure and Coronary Artery and Myocardial Protection

This technology includes a novel transcatheter repair for functional mitral valve regurgitation, called mitral cerclage annuloplasty. This includes coronary artery protection for mitral cerclage annuloplasty against inside-out compression from subsequent transcatheter valve-in-ring mitral valve implantation, wherein the ring is created by the cerclage annuloplasty. Cerclage annuloplasty is to create a semi-rigid ring at the level of the mitral annulus.

Segmented Metallic MRI Guidewires Using Stiffness-matched Nonconductive Connectors for Catheterization Procedures

This technology includes a metallic guidewire that is suitable for MRI catheterization, because it is mechanically long but electrically consists of short conductive segments that cannot resonate during MRI. The invention consists of stiffness-matched non-conductive connectors or connections that are used along with short metallic segments. The embodiment reduced to practice has torquability and flexibility comparable to marketed metallic guidewires, yet is free from MRI heating.

Endo-cameral Closure Device for Structural Heart Defects and Blood Vessel Repair

This technology includes a device to close a hole in the wall of a large blood vessel or cardiac chamber from the inside out, delivered over a guidewire and through a catheter or sheath. First, the proximal portion deploys within the vessel or chamber and is advanced over a guidewire to oppose the wall and seal the hole. Second, the distal portion self-assembles outside the vessel or chamber upon withdrawal of the guidewire. Deployment of the distal portion anchors the device securely in place.

SARS-CoV-2 Neutralizing Nanobodies for Therapeutic and Diagnostic Uses

This technology involves the utilization of highly effective nanobodies, specifically camelid antibodies, derived from immunized llamas to neutralize SARS-CoV-2. Additionally, it employs a unique mouse model, called a "nanomouse," that is engineered to express antibody genes from camels, alpacas, and dromedaries. These nanobodies offer significant advantages over traditional human and mouse antibodies due to their smaller size, which allows them to effectively target and bind to specific areas on antigens.

Three-dimensional Fluorescence Polarization Excitation via Multiview Imaging

This technology includes a method that extends fluorescence polarization imaging so that the dipole moment of a fluorescent dye may be excited regardless of its 3D orientation. By exciting the dipole from multiple directions, we ensure that excitation may occur even if the dipole is unfavorably oriented along the axial (propagation) axis. If the dye can be rigidly attached to the structure of interest, our method also enables the 3D orientation of the structure to be estimated accurately.