Method for Assembling Decellularized Tissue Extracellular Matrix in 3D Tumor Spheroids

Cell culture investigations using spheroids and organoid models have had a major impact on biomedical advancement as alternative sources for costly, in vivo animal testing.  However, these 3-D cell constructs are limited in that they do not integrate extracellular components within the structure important for more reliable and accurate biological responses.  Extracellular matrix (ECM) from decellularized tissues provide a physical scaffolding and offers crucial biochemical and biomechanical cues for cellular constituents.

Human Synovial Sarcoma Cell Line A2243

Synovial sarcoma is a cancer affecting mesenchymal cells in connective tissues. This rare cancer is typically linked to genetic abnormalities or exposure to radiation. Metastatic growth throughout the body can occur primarily through blood circulation. More than 90% of synovial sarcomas show a characteristic t(X;18)(p11;q11) translocation involving the SYT and SSX genes. The resulting SYT-SSX abnormal fusion protein causes misregulation of downstream gene expression, leading to tumor formation.

Topoisomerase III (TOP3) Inhibitors as Antiviral and Anticancer Compounds based on Bisacridines

  • Topoisomerase 3B (TOP3B) is the only topoisomerase that can act on RNA as well as DNA. Thus, it is a target of interest for the development of cancer therapies and RNA viral infection therapies. TOP3B is not an essential gene for carcinogenesis, but a subset of cancer cells with pre-existing genome instability are particularly vulnerable to the inactivation of TOP3B. While inhibitors for other topoisomerases are among the most potent and widely used anticancer agents, there are no known inhibitors of TOP3B.

Novel Chemoattractant-Based Toxins To Improve Vaccine Immune Responses for Cancer and Infectious Diseases

Cancer is one of the leading causes of death in United States and it is estimated that there will be more than half a million deaths caused by cancer in 2009.  A major drawback of the current chemotherapy-based therapeutics is the cytotoxic side-effects associated with them.  Thus there is a dire need to develop new therapeutic strategies with fewer side-effects.  Immunotherapy has taken a lead among the new therapeutic approaches.  Enhancing the innate immune response of an individual has been a key approach for the treatment against different diseases such as cancer an

T-Cell Immunotherapy that Targets Aggressive Epithelial Tumors

Metastatic cancers cause up to 90% of cancer deaths, yet few treatment options exist for patients with metastatic disease. Adoptive transfer of T cells that express tumor-reactive T-cell receptors (TCRs) has been shown to mediate regression of metastatic cancers in some patients. Unfortunately, identification of antigens expressed solely by cancer cells and not normal tissues has been a major challenge for the development of T-cell based immunotherapies. Thus, it is essential to find novel target antigens differentially expressed in cancer versus normal tissues.

A Novel Rapid Point-of Care Diagnostic Method for Infectious and Autoimmune Diseases

Rapid point-of-care, antibody-based testing is not available for the diagnosis of autoimmune and most infectious diseases. For detecting autoantibodies associated with most autoimmune conditions, fluid-phase immunoprecipitation assays are required. However, these assays usually involve radioactivity and are not feasible for point-of-care applications. The subject invention describes methods of using neodymium magnet for diagnosis of infectious and autoimmune diseases including lupus, Sjögren's syndrome, type I diabetes, HIV and Lyme disease.

Potential New Drugs for Treating or Preventing Pruritus

NIH scientists have identified new compositions that could potentially be used to treat or prevent pruritus (itchiness). The newly discovered compounds can block a newly identified itch pathway and might be effective for persistent itch caused by psoriasis, atopic dermatitis, renal failure, liver cirrhosis and chemotherapy. These compounds are different from commonly used antihistamines which induce drowsiness and sedation. These compounds have the potential to be used for human and animals.

Novel Human Insulin Cα-Peptide as an Antagonist for Islet and Brain Amyloidosis

Over 32 million Americans are living with Diabetes and newly diagnosed cases of type 1 and type 2 diabetes is increasing. A defining feature of type 2 diabetes mellitus (T2DM) is the accumulation of islet amyloid polypeptide (IAPP) fibrils in pancreatic islets. Such accumulations form amyloid plaques, referred to as islet amyloidosis. Mounting evidence suggests that islet amyloidosis plays a causative role in the development and progression of ß-cell dysfunction in T2DM.

Thyclotide Peptide Conjugates With Cell Permeability And Inhibitory Activity

Thyclotides are oligomeric molecules with chiral tetrahydrofuran (THF) diamine units consisting of either R,R or
S,S stereochemistry. Thyclotide sequences with R,R stereochemistry bind to complementary DNA and RNA
sequences with strong affinity and sequence specificity, while thyclotides with S,S stereochemistry have a helical
handedness that does not allow binding to DNA or RNA. Thyclotides are cell permeable and can be used to
suppress microRNA activity in cells. Peptides are oligomeric molecules consisting of amino acids found in

Sidechain Functionalized S-Acylbenzamides With Anti-HIV Activity

HIV infection remains a major medical problem, with approximately 38 million people worldwide living with HIV. Nipamovir and SAMT-247 are simple and inexpensive small molecules that inactivate HIV virus by interference with final maturation steps of the virus. This mechanism provides a high barrier for HIV to develop resistance. In fact, lab experiments designed to encourage HIV to develop resistance to Nipamovir and SAMT-247 have all failed. In animal tests, Nipamovir and SAMT-247 do not display toxic side effects.