Encapsulated Streptococcus Compositions and Methods for Pneumococcal Vaccine, Probiotic, and Diagnostic Assay Development

Streptococcus pneumoniae (S. pneumoniae) bacteria, or pneumococcus, can cause many types of illnesses. These range from ear and sinus infections to life-threatening conditions such as pneumonia, bloodstream infections, and meningitis. Pneumococci are surrounded by a polysaccharide capsule, which is thought to help it evade the immune system. Presently, over 90 known serotypes of S. pneumoniae have been identified, of which only a minority produce the majority of pneumococcal infections; a serotype is defined by a unique pneumococcal capsule structure.

Vascular Anchoring Introducer Sheath for Interventional Cardiac Procedures

This technology includes a device and method for maintaining access to a location in the body while reducing or eliminating the potential for pulling an access device (i.e., catheter) back through an opening, such as a cardiac procedure. An introducer sheath includes a distal indented portion and a balloon, so that once placed in a desired location through tissue, the balloon can be inflated to anchor the sheath against retraction.

Method To Generate Chondrocytes from Human Induced Pluripotent Stem Cells (hIPSCs) and their use in Repairing Human Injury and Degenerative Diseases

This technology includes a method for differentiating human induced pluripotent stem cells (hiPSCs) into stable chondrocytes, capable of producing cartilage, and their use in cartilage repair in human injury and degenerative diseases. In suspension culture, hiPSC aggregates demonstrate gene and protein expression patterns similar to articular cartilage.

A Novel Carbohydrate Antibody to GalNac1-3Gal and Its Application for Cancer Diagnostic and Prognosis

Cervical cancer is one of the most common cancers among women worldwide. Currently, physical descriptors such as tumor size and depth are the primary factors used for deciding the course of treatment. Despite significant efforts to identify prognostic biochemical markers or therapeutic targets to improve diagnosis and treatment, none have achieved routine clinical use. An example of one previously identified biomarker is the Tn antigen, a carbohydrate moiety composed of a GalNAc residue linked to serine or threonine.

Cancer Vaccines against POTE for Treating Solid Tumors

POTE is a novel tumor antigen expressed in a variety of cancers including breast, prostate, colon, lung, ovary, and pancreas cancers.  POTE has limited expression in normal tissues and therefore a specific target for cancer treatments, including immunotherapy.  The researchers seek statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize immunogenic peptides. 

T-Cell Immunotherapy that Targets Aggressive Epithelial Tumors

Metastatic cancers cause up to 90% of cancer deaths, yet few treatment options exist for patients with metastatic disease. Adoptive transfer of T cells that express tumor-reactive T-cell receptors (TCRs) has been shown to mediate regression of metastatic cancers in some patients. Unfortunately, identification of antigens expressed solely by cancer cells and not normal tissues has been a major challenge for the development of T-cell based immunotherapies. Thus, it is essential to find novel target antigens differentially expressed in cancer versus normal tissues.

Characterization and Comparison of LAD2 and LADR Mast Cell Lines: Insights into Mastocytosis and HIV Infection

LAD2 and LADR cell lines are invaluable tools in mast cell research, offering insights into mastocytosis and immune responses. Derived from CD34+ cells, LAD2 cells have been extensively used for over 18 years, while LADR cells, a newer variant, exhibit enhanced characteristics such as larger size, increased granulation, and faster doubling time. Both cell lines release granular contents upon FceRI aggregation and can be infected with various strains of HIV. LADR cells, in particular, show greater expression of certain surface receptors and mRNA compared to LAD2 cells.

A Fundamental Tool for Efficient Recovery of RNA Viruses through Reverse Genetics

BSR T7/5 cells represent a foundational advancement in virology, offering a robust platform for the recovery of RNA viruses via reverse genetics. Established over 20 years ago, these cells have proven instrumental in the recovery of a wide array of RNA viruses, particularly those belonging to the mononegavirales order.

GATA-3 Reporter Plasmids for Revealing Underlying Mechanisms in Breast Cancer

GATA-3 is a transcription factor that is highly expressed in normal cells of the mammary luminal epithelium. GATA-3 plays a regulatory role in determining the fate of cells in the mammary gland. Disruption of GATA-3 expression leads to defects in the development of mammary cells, including an inability to differentiate properly into the correct cell type. GATA-3 function is also disrupted in various breast cancer models indicating that GATA-3 has tumor suppressive properties in normal cells.