Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin’s lymphoma and consists of three subtypes: activated B-cell (ABC), germinal center B-cell (GBC), and primary mediastinal B-cell (PMB). Despite advances in the front-line therapy for DLBCL, approximately one-third of patients will relapse. Substantially worse outcomes have been reported for patients diagnosed with ABC DLBCL and treated with standard chemoimmunotherapy, suggesting the need for novel strategies that improve treatment outcomes.

Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

CD19 and CD20 are promising targets for the treatment of B-Cell malignancies.  Unfortunately, some clinical studies have shown that there is a loss of CD19 or CD20 expression in various cases of lymphomas and leukemias, particularly after treatment with an agent that targets CD19 (e.g., anti-CD19 CAR-T). However, studies have shown that expression of one protein is retained when the other is lost. This suggests that a therapeutic with the ability to simultaneously target both CD19 and CD20 could represent a solution to the drawbacks of current therapies. 

Exo-Clean Technology for Purifying Extracellular Vesicle Preparations from Contaminants

Extracellular Vesicles (EVs), including exosomes and microvesicles, are nanometer-sized membranous vesicles that can carry different types of cargos, such as proteins, nucleic acids and metabolites. EVs are produced and released by most cell types. They act as biological mediators for intercellular communication via delivery of their cargos. This unique ability spurred translational research interest for targeted delivery of therapeutic molecules to treat a wide range of diseases. EVs also contain interesting information of their specific cellular origin.

A Most Efficient and Convergent Principal Component Analysis (PCA) Method for Big Data

Big data usually means big sample size with many outliers, in which traditional scalable L2-norm principal component analysis (L2-PCA) will fail. Current existing L1-norm PCA (L1-PCA) methods can improve robustness over outliers, however, its scalability is usually limited in either sample size or dimension size.  The inventor proposes an online flipping method to solve L1-PCA challenges, which is not only convergent asymptotically (or with big data), but also achieves most efficiency in the sense each sample is visited only once to extract one principal component (PC).

ApoA-1 Mimetic Peptides Promoting Lipid Efflux from Cells for Treatment of Vascular Disorders

This invention involves ApoA-1 mimetic peptides with multiple amphipathic alpha-helical domains that promote lipid efflux from cells and are useful in the treatment and prevention of dyslipidemic, inflammatory and vascular disorders. IND-enabling studies for one of the peptides, named Fx-5A, are completed in preparation for an IND filing at the FDA, to be followed by a Phase I clinical trial planned for 2017.

Therapeutic Peptide Treatment for Dyslipidemic and Vascular Disorders

This invention is directed to use of certain peptide analogs comprising multiple amphipathic helical domains that are able to promote cellular lipid efflux and stimulate lipoprotein lipase activity. As a result, administration of invention peptides lead to reduced incidences of hypertriglyceridemia without inducing toxicity. Existing peptides that stimulate efflux of lipids from cells exhibit unacceptably high toxicity. Invention peptides are superior to existing peptides and can also be used to treat or prevent a vast range of vascular diseases, and their dyslipidemic precursors.

Glucocerebrosidase Non-inhibitory Chaperones for the Treatment of Gaucher Disease, Parkinson's Disease, and Other Proteinopathies

Gaucher disease is a rare lysosomal storage disease that is characterized by a loss of function of the glucocerebrosidase (GCase) enzyme, which results in a decreased ability to degrade its lipid substrate, glucocerebroside. The intracellular build up of this lipid causes a broad range of clinical manifestations, ranging from enlarged spleen/liver and anemia to neurodegeneration. In Gaucher disease, the loss of GCase function has been attributed to low levels of the protein in the lysosomal compartment, resulting from improper GCase folding and transport.

Derivatives of Docosahexaenoylethanolamide (DEA) for Neurogenesis

The invention pertains to derivatives of docosahexaenoylethanolamide (synaptamide or DEA) and their use in inducing neurogenesis, neurite growth, and/or synaptogenesis. As such, these DEA derivatives can be used as therapeutics for neurodegenerative diseases such as traumatic brain injury, spinal cord injury, peripheral nerve injury, stroke, multiple sclerosis, autism, Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis. The DEA derivatives of the invention have increased potency and hydrolysis resistance as compared to native DEA.

Generation of Artificial Mutation Controls for Diagnostic Testing

This technology relates to a method of generating artificial compositions that can be used as positive controls in a genetic testing assay, such as a diagnostic assay for a particular genetic disease. Such controls can be used to confirm the presence or absence of a particular genetic mutation. The lack of easily accessible, validated mutant controls has proven to be a major obstacle to the advancement of clinical molecular genetic testing, validation, quality control (QC), quality assurance (QA), and required proficiency testing.

Improved Protein Quantification Process and Vaccine Quality Control Production

This CDC invention is a method for identifying and quantifying a group of proteins in a complex mixture by a liquid chromatography-tandem mass spectrometry assay. The technology was developed for influenza although it can be used for a wide variety of protein quantification applications. As specifically developed, conserved peptides from the proteins of influenza (hemagglutinin, neuramidase, matrix 1 and 2, and nucleoprotein) have been synthesized and labeled to be used as internal standards for the quantification of those proteins in a complex (biological or manufactured) matrix.