Cancer Therapeutic Based on Hypoxia Inducible Factor 1 (HIF-1) Inhibitors

Hypoxia is a characteristic of many solid tumors resulting from accelerated cellular proliferation and inadequate vascularization. HIF-1 is a transcription factor critical for maintaining cellular homeostasis in, and adaptively responding to, low oxygen environments. HIF-1 becomes activated through binding to the transcriptional co-activator protein p300. Disruption of the HIF-1/p300 interaction could potentially modulate HIF-1 activity.

Immunogenic Antigen Selective Cancer Immunotherapy

Melanoma is a particularly aggressive form of cancer primarily caused by over-exposure to sunlight.  Although melanoma can strike at any age, the malignancy disproportionately impacts persons of advanced age, as these individuals often have decades of repeated exposure to harmful levels of ultraviolet radiation.  Scientists at NIH among others have clarified the link between advanced melanoma and other malignancies and expression of SPANX-B.

Use of a Modified Adaptor Molecule LAT to Improve Immunotherapy for Cancer and Other Diseases

One problem with the development of immunotherapy for cancer or other diseases is the inability to stimulate a sufficient immune response in patients to tumor associated antigens. The Linker Adapted for T Cell Signaling molecule (LAT) has been shown to be an important molecule in T cell signaling. The inventions described and claimed in this patent application illustrate a new supportive role for LAT which may be harnessed to improve a patient's immune response to tumor-associated antigens.

Module to Freeze and Store Frozen Tissue

Tissue obtained for both clinical and research purposes is routinely frozen, commonly in Optimal Cutting Temperature (OCT), an embedding media, for eventual downstream analysis, commonly including sectioning on a cryostat. Though OCT is the standard compound used for freezing, there is no standard freezing protocol. Thus, current methods of handling, labeling, and storing OCT-embedded tissue vary widely, and specimens are often damaged or degraded due to undesirable temperature fluctuations during handling and freezing.

Convolutional Neural Networks for Organ Segmentation

Accurate automated organ and disease feature segmentation is a challenge for medical imaging analysis. The pancreas, for example, is a small, soft, organ with low uniformity of shape and volume between patients. Because of the lack of uniform image patterns, there are few features that can be used to aid in automated identification of anatomy and boundaries. Segmentation of high variability features is uniquely difficult for a computer to perform.

Computer-Aided Diagnostic for Use in Multiparametric MRI for Prostate Cancer

Multiparametric MRI improves image detail and prostate cancer detection rates compared to standard MRI. Computer aided diagnostics (CAD) used in combination with multiparametric MRI images may further improve prostate cancer detection and visualization. The technology, developed by researchers at the National Institutes of Health Clinical Center (NIHCC), is an automated CAD system for use in processing and visualizing prostate lesions on multiparametric MRI images.

Convolutional Neural Networks for Organ Segmentation

Accurate automated organ and disease feature segmentation is a challenge for medical imaging analysis. The pancreas, for example, is a small, soft, organ with low uniformity of shape and volume between patients. Because of the lack of uniform image patterns, there are few features that can be used to aid in automated identification of anatomy and boundaries. Segmentation of high variability features is uniquely difficult for a computer to perform.

Method and System of Building Hospital-Scale Medical Image Database

Developing computer systems that can recognize and locate image features associated with disease is a challenge for developing fully-automated and high precision computer assisted diagnostics. Joint learning of language tasks in association with vision tasks (association of image features with text annotation) adds an additional level of challenge.  Furthermore, scaling-up approaches from small to large datasets presents additional issues, particularly related to medical images.

Treatment of GPR101-Related, Growth Hormone-Related Disorders Such as Gigantism, Dwarfism or Acromegaly

Microduplications of the GPR101 gene (located on chromosome Xq26.3 and encodes a G-protein coupled receptor) can result in an excess of growth hormone causing gigantism, that has an onset in early childhood. It is also associated with the growth of sporadic growth hormone producing adenomas in some patients with acromegaly.