Synergistic Internal Ribosomal Entry Site (IRES)—MicroRNA-Based Approach for Attenuation of Flaviviruses and Live Vaccine Development

Many members of the Flaviviridae family are emerging and reemerging human pathogens that have caused outbreaks of devastating and often fatal diseases and represent a serious public health problem on a global scale. There is no single attenuation strategy that exists which is sufficient to prepare a safe, efficacious and immunogenic live attenuated virus vaccine that will work universally for Flaviviridae.

A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development

An arthropod-borne virus, Zika virus (ZIKV), has recently emerged as a major human pathogen. Associated with complications during perinatal development and Guillain-Barré syndrome in adults, ZIKV raises new challenges for understanding the molecular determinants of flavivirus pathogenesis. This underscores the necessity for the development of a reverse genetic system based on an epidemic ZIKV strain. This technology relates to the generation and characterization in cell cultures of an infectious cDNA clone of ZIKV isolated from the 2015 epidemic in Brazil.

Live Attenuated Zika Virus Vaccine

This application claims live attenuated Zika viruses and vaccines, attenuated chimeric Zika viruses and vaccines, and multivalent immunogenic compositions comprising Zika vaccines and vaccines for other flaviviruses. The chimeric Zika viruses claimed include a first nucleotide sequence encoding at least one structural protein from a Zika virus (ZIKV), a second nucleotide sequence encoding at least one nonstructural protein from a first flavivirus, and a third nucleotide sequence of a 3' untranslated region from a second flavivirus.

Broadly Neutralizing Antibodies Against HIV-1 Directed to the CD4 Binding Site of HIV Envelope Protein

Inhibiting the ability of HIV-1, the virus that causes AIDS, to infect cells is one approach to both prevention and treatment of HIV. Scientists at the NIAID Vaccine Research Center have isolated and characterized neutralizing antibodies (VRC01, 02, 03, and 07) that bind to the CD4 binding site of HIV-1 envelope glycoprotein gp120. These human monoclonal antibodies can potentially be used as a therapeutic to: (1) treat an HIV infection, (2) decrease and prevent HIV-transmission from mother to infant, and (3) be effectively combined with anti-retroviral drug therapy.

Neutralizing Antibodies to Influenza HA and Their Use and Identification

The effectiveness of current influenza vaccines varies by strain and season, in part because influenza viruses continuously evolve to evade human immune responses. While the majority of seasonal influenza infections cause relatively mild symptoms, each year influenza virus infections result in over 500,000 hospitalizations in the United States and Europe. Current standard of care for individuals hospitalized with uncomplicated influenza infection is administration of neuraminidase inhibitors.

Chlamydial Vaccine Technologies

The National Institute of Allergy and Infectious Diseases has invented three chlamydial vaccine technologies, which have shown promising preclinical efficacy. Chlamydia trachomatis infection is the most common sexually transmitted bacterial infection. If left untreated, chlamydia infection can lead to pelvic inflammatory disease and infertility. Chlamydia is also the leading cause of preventable blindness in the world. Despite increased surveillance, prevalence continues to increase, and the need to develop an effective chlamydial vaccine remains.

Technologies:

West Nile/Zika Virus Chimeras for Inactivated Zika Vaccine and Diagnostic Assay Development

Zika virus (ZIKV) is a flavivirus primarily transmitted by infected Aedes mosquitoes. Infection with ZIKV during pregnancy can affect the fetus causing microcephaly, neurological complications, and other birth defects. Adults are also at risk of developing Guillain-Barre syndrome and other neurological disorders from ZIKV infection. In response to the 2015-2016 Zika outbreak, CDC researchers developed new Zika virus chimeras that can be used for inactivated Zika vaccine candidates and faster Zika antibody (Ab) neutralization assay testing.

A Novel Thermal Method to Inactivate Rotavirus for Use in Vaccines

Rotavirus is a highly contagious, diarrhea-inducing pathogen that annually causes approximately 250,000 deaths worldwide and millions of hospitalizations, especially afflicting infants and young children. One strategy to combat this virus is through vaccination. Continuing safety and efficacy concerns with the currently existing live, oral vaccines against rotavirus have led researchers to search for alternative treatment approaches, such as vaccines containing inactivated rotavirus.

Near Real-time, Low-cost, Hand-held Sensors for Measuring Elemental Concentration of Airborne Particles for Indoor or Outdoor Air Quality Monitoring

Airborne particles can have great impact on air quality, weather, and human health. In particular, long-term inhalation of toxic particulate matter in workplaces could pose a significant health risk. NIOSH scientists have developed a new, low-cost approach based on application of atmospheric radio frequency glow discharge (rf-GD) optical emission spectroscopy for near real-time measurement of elemental concentration in aerosols. The method involves collection of aerosol particles on an electrode tip in a coaxial microelectrode system, followed by excitation of the particles using rf-GD.