Stable SVG Cell Lines for Studying JCV Infection and Progressive Multifocal Leukoencephalopathy

This invention relates to the derivation of two stable cell lines, SVG5F4 and SVG1OB1, which can be used to study JC-virus infection. SVG cells are a heterogeneous population of immortalized human fetal glial cells, which express SV40 large T antigen. They are capable of supporting JC virus infection; however, the culture is mixed and changes over time. The two SV40-derived cell lines described here are stable over many passages.

Functional Brain Region-Specific Neural Spheroids for Modeling Neurological Diseases and Therapeutics Screening

3D spheroids have emerged as powerful drug discovery tools given their high-throughput screening (HTS) compatibility. The present invention presents a method for generating functional neural spheroids with differentiated human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes at cell type compositions mimicking specific regions of the human brain.

Methods for Using Modulators of Extracellular Adenosine or an Adenosine Receptor To Enhance Immune Response and Inflammation

Local inflammation processes are crucially important in the host defense against pathogens and for successful immunization because proinflammatory cytokines are necessary for initiation and propagation of an immune response. However, normal inflammatory responses are eventually terminated by physiological termination mechanisms, thereby limiting the strength and duration of immune responses, especially to weak antigens. The inventors have shown that adenosine A2a and A3a receptors play a critical role in down-regulation of inflammation in vivo.

Attenuated Host-Range Restricted Dengue Viruses Derived by Site-Directed Mutagenesis of the Conserved 3-Stem and Loop Structure in Genomic RNA for Use as Vaccines

Although flaviviruses cause a great deal of human suffering and economic loss, there is a shortage of effective vaccines. The present invention is directed toward vector stage replication-defective flaviviruses that are replication-defective in mosquito vectors that transmit them to humans. The replication-defective flaviviruses of the present invention demonstrate a limited ability to replicate in the vector organisms that transmit flaviviruses from one host to another.

Cloned Genome of Infectious Hepatitis C Virus of Genotype 2a and Uses Thereof

The current invention provides a nucleic acid sequence comprising the genome of infectious hepatitis C viruses (HCV) of genotype 2a. The encoded polyprotein differs from those of the infectious clones of genotypes 1a and 1b (U.S. Patent 6,153,421) by approximately thirty (30) percent. It covers the use of this sequence and polypeptides encoded by all or part of the sequence, in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV. Additional information can be found in Yanagi et al.

Infectious cDNA Clone of GB Virus B and Uses Thereof

The current invention provides nucleic acid sequences comprising the genomes of infectious GB virus B, the most closely related member of the Flaviviridae to hepatitis C virus (HCV). It also covers chimeric GBVB-HCV sequences and polypeptides for use in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV. Additional information can be found in Bukh et al. (1999), Virology 262, 470-478.

HCV/BVDV Chimeric Genomes and Uses Thereof

The current invention provides nucleic acid sequences comprising chimeric viral genome of hepatitis C Virus (HCV) and bovine viral diarrhea viruses (BVDV). The chimeric viruses are produced by replacing the structural region or a structural gene of an infectious BVDV clone with the corresponding region or gene of an infectious HCV. It covers the use of these sequences and polypeptides encoded by all or part of the sequences in the development of vaccines and diagnostic assays for HCV and the development of screening assays for the identification of antiviral agents for HCV.

Recombinant Proteins of the Swine Hepatitis E Virus and Their Uses as a Vaccine and Diagnostic Reagents for Medical and Veterinary Applications

This invention is based on the discovery of the swine hepatitis E virus (swine HEV), the first animal strain of HEV identified and characterized, and its ability to infect across species. The inventors have found that the swine HEV is widespread in the general pig population in the United States and other countries and that swine HEV can infect non-human primates. The inventors have amplified and sequenced the complete genome of swine HEV. The capsid gene (ORF2) of swine HEV has been cloned and expressed in a baculovirus expression system.

Development of Mutations Useful for Attenuating Dengue Viruses and Chimeric Dengue Viruses

Although flaviviruses cause a great deal of human suffering and economic loss, there is a shortage of effective vaccines. This invention relates to dengue virus mutations that may contribute to the development of improved dengue vaccines. Site directed and random mutagenesis techniques were used to introduce mutations into the dengue virus genome and to assemble a collection of useful mutations for incorporation in recombinant live attenuated dengue virus vaccines.

Major Neutralization Site of Hepatitis E Virus and Use of this Neutralization Site in Methods of Vaccination

Hepatitis E is endemic in many countries throughout the developing world, in particular on the continents of Africa and Asia. The disease generally affects young adults and has a very high mortality rate, up to 20%, in pregnant women. This invention relates to the identification of a neutralization site of hepatitis E virus (HEV) and neutralizing antibodies that react with it. The neutralization site is located on a polypeptide from the ORF2 gene (capsid gene) of HEV.