Polypeptides and Methods for Enhancing and Balancing Monovalent or Multivalent Flavivirus Vaccines

CDC researchers have developed a potent immunogenic enhancer polypeptide useful for improving flavivirus vaccines. Flaviviruses such as dengue virus (1, 2, 3 and 4), Japanese encephalitis virus, Murray Valley encephalitis virus, St. Louis encephalitis virus, yellow fever virus and tick-borne encephalitis virus are a great burden on public health. This technology describes an identified CD4+ T cell epitope occurring within the E-glycoprotein of West Nile virus and methods of using this polypeptide to increase vaccine immunogenicity in monovalent vaccines.

Prevention or Treatment of Viral Infections by Inhibition of the Histone Methyltransferases EZH1/2

Herpes simplex viral infections, including herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), are exceptionally common worldwide. These viruses establish lifelong persistent infections with cycles of lytic reactivation to produce recurrent diseases including oral and genital lesions, herpetic keratitis/blindness, congenital-developmental syndromes, and viral encephalitis. Infection with HSV-2 increases the rate of human immunodeficiency virus (HIV) transmission in coinfected individuals. DNA replication inhibitors are typically used to treat herpesvirus infections.

Long Acting Therapeutic Conjugates with Evans Blue

This invention is a platform technology that pertains to the advantages of conjugating therapeutics to Evans Blue thus providing long lasting pharmacokinetic profiles by complexing with albumin. Notably, albumin bound therapeutic- or prodrug-Evans Blue conjugates provide a complex with a total molecular size above 60 kDa thus eliminating the risk for renal clearance. Interestingly, since albumin also crosses the blood-brain barrier and since all circulating Evans Blue is bound to albumin, Evans Blue bound therapeutics or prodrugs can also cross the blood-brain barrier.

Polyvalent Influenza Virus-Like Particles (VLPs) and Use as Vaccines

Influenza virus is a major public health concern, causing up to 500,000 deaths annually. The current strategy of reformulating vaccines annually against dominant circulating strains leads to variable protective efficacy and is unlikely to protect against novel influenza viruses with pandemic potential. Thus, there is a great need for a vaccine that provides “universal” protection against influenza viruses.

Broadly Neutralizing Antibodies Against HIV-1 Directed to the CD4 Binding Site of HIV Envelope Protein

Inhibiting the ability of HIV-1, the virus that causes AIDS, to infect cells is one approach to both prevention and treatment of HIV. Scientists at the NIAID Vaccine Research Center have isolated and characterized neutralizing antibodies (VRC01, 02, 03, and 07) that bind to the CD4 binding site of HIV-1 envelope glycoprotein gp120. These human monoclonal antibodies can potentially be used as a therapeutic to: (1) treat an HIV infection, (2) decrease and prevent HIV-transmission from mother to infant, and (3) be effectively combined with anti-retroviral drug therapy.

Neutralizing Antibodies to Influenza HA and Their Use and Identification

The effectiveness of current influenza vaccines varies by strain and season, in part because influenza viruses continuously evolve to evade human immune responses. While the majority of seasonal influenza infections cause relatively mild symptoms, each year influenza virus infections result in over 500,000 hospitalizations in the United States and Europe. Current standard of care for individuals hospitalized with uncomplicated influenza infection is administration of neuraminidase inhibitors.

Chlamydial Vaccine Technologies

The National Institute of Allergy and Infectious Diseases has invented three chlamydial vaccine technologies, which have shown promising preclinical efficacy. Chlamydia trachomatis infection is the most common sexually transmitted bacterial infection. If left untreated, chlamydia infection can lead to pelvic inflammatory disease and infertility. Chlamydia is also the leading cause of preventable blindness in the world. Despite increased surveillance, prevalence continues to increase, and the need to develop an effective chlamydial vaccine remains.

Technologies:

West Nile/Zika Virus Chimeras for Inactivated Zika Vaccine and Diagnostic Assay Development

Zika virus (ZIKV) is a flavivirus primarily transmitted by infected Aedes mosquitoes. Infection with ZIKV during pregnancy can affect the fetus causing microcephaly, neurological complications, and other birth defects. Adults are also at risk of developing Guillain-Barre syndrome and other neurological disorders from ZIKV infection. In response to the 2015-2016 Zika outbreak, CDC researchers developed new Zika virus chimeras that can be used for inactivated Zika vaccine candidates and faster Zika antibody (Ab) neutralization assay testing.

A Novel Thermal Method to Inactivate Rotavirus for Use in Vaccines

Rotavirus is a highly contagious, diarrhea-inducing pathogen that annually causes approximately 250,000 deaths worldwide and millions of hospitalizations, especially afflicting infants and young children. One strategy to combat this virus is through vaccination. Continuing safety and efficacy concerns with the currently existing live, oral vaccines against rotavirus have led researchers to search for alternative treatment approaches, such as vaccines containing inactivated rotavirus.