Enzymatically-Active RNA-Dependent RNA Polymerase From a Human Norovirus (Calicivirus)
The noroviruses (formerly known as “Norwalk-like viruses”) are associated with gastroenteritis outbreaks, affecting large numbers of individuals each year. Emerging data are supporting their increasing recognition as important agents of diarrhea-related morbidity and mortality. The frequency with which noroviruses are associated with gastroenteritis as “food and water-borne pathogens” has led to the inclusion of caliciviruses as Category B Bioterrorism Agents/Diseases.
Construction of Recombinant Baculoviruses Carrying the Gene Encoding the Major Capsid Protein, VP1, From Calicivirus Strains (Including Norovirus Strains Toronto, Hawaii, Desert Shield, Snow Mountain, and MD145-12)
Construction of an Infectious Full-Length cDNA Clone of the Porcine Enteric Calicivirus RNA Genome
Porcine enteric calicivirus (PEC) is a member of the genus Sapovirus in the family Caliciviridae. This virus causes diarrheal illness in pigs, and is presently the only enteric calicivirus that can be grown in cell culture. In addition to its relevance to veterinary medicine as a diarrheal agent in pigs, PEC serves as an important model for the study of enteric caliciviruses that cause diarrhea and that cannot be grown in cell culture (including the noroviruses represented by Norwalk virus).
MVA Expressing Modified HIV envelope, gag, and pol Genes
Haplotypes of Human Bitter Taste Receptor Genes
Multimeric Protein Toxins to Target Cells Having Multiple Identifying Characteristics
Pyruvate Kinase M2 Activators for the Treatment of Cancer
Small Molecule Inhibitors of Clk and Dyrk Kinases for Potential Therapeutic Intervention of Down Syndrome, Alzheimer's Disease and Cancer
Method To Generate Chondrocytes from Human Induced Pluripotent Stem Cells (hIPSCs) and their use in Repairing Human Injury and Degenerative Diseases
This technology includes a method for differentiating human induced pluripotent stem cells (hiPSCs) into stable chondrocytes, capable of producing cartilage, and their use in cartilage repair in human injury and degenerative diseases. In suspension culture, hiPSC aggregates demonstrate gene and protein expression patterns similar to articular cartilage.