Methods to Regulate Biofilm Development to Prevent Infection on Indwelling or Implantable Medical Devices

Formation of biofilms (microorganisms) on medical devices is a common cause of infection and device replacement. For example, biofilm formation on urinary catheters is associated with the development of catheter-associated urinary tract infections (CAUTI), and recent studies indicate that approximately 9% of HAIs stem from CAUTI. Urinary catheters are also thought to be one of the largest reservoirs of nosocomial antibiotic-resistant pathogens. The related increases in patient morbidity, mortality, and costs with CAUTI are substantial.

A New Class of Immunomodulatory Drugs for Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disease caused by activated autoimmune T lymphocytes in patients resulting in inflammatory demyelination in the central nervous system. Current treatments are focused on functional control of these activated autoimmune T cells, but these treatments are non-specific T cell inhibitors and have serious, sometimes fatal side effects. A specific therapy aimed at eliminating these autoimmune T cells through restimulation-induced cell death (RICD) could cure the disease and overcome the fatal side effects of current therapies.

Use of Rostafuroxin to Inhibit Viral Infection

Acute respiratory infections during early childhood constitute a major human health burden. Human respiratory syncytial virus (RSV) is the most common and important viral cause of severe acute pediatric respiratory infections worldwide. Mortality due to RSV in the post-neonatal (28 days to 1 year old) population is second only to malaria. It is estimated that RSV causes 34 million lower respiratory tract infections, 4 million hospitalizations, and 66,000-199,000 deaths every year in children less than 5 years of age.

Middle East Respiratory Syndrome Coronavirus Antibodies

Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a highly lethal pulmonary infection with ~35% mortality. Currently there are no prophylactic measures or effective therapies. Inventors at the Vaccine Research Center of the National Institute of Allergy and Infectious Diseases have identified and developed neutralizing monoclonal antibodies (nMAbs) against the MERS-CoV. This invention describes antibodies that target the Spike (S) glycoprotein on the coronavirus surface, which mediates viral entry into host cells.

Universal Influenza Virus Probes for Enrichment of Influenza Viral Sequences

This technology is a set of influenza virus enrichment probes developed to increase the sensitivity of sequence-based, universal detection of all influenza viruses. This universal influenza enrichment probe set contains a unique set of 46,953 biotin-labeled, RNA probes, each 120 base-pairs long, that can be used to enrich for any influenza sequences without prior knowledge of type or subtype.

Potential Treatment for sickle-cell disease and thalassemia

The technology addresses treatment options for diseases such as sickle-cell and thalassemia. Traditionally, such beta-globinopathies are treated through bone marrow transplantation. However, this method is limited due to high treatment costs and finding a matched-donor. This relies on increasing fetal hemoglobin to potentially cure the disease. NIH inventors have identified a protein called Rio-Kinase 3 (RIOK3), that inhibits the production of fetal hemoglobin. Their work shows that inhibiting RIOK3 increases the production of fetal hemoglobin.

Encapsulated Streptococcus Compositions and Methods for Pneumococcal Vaccine, Probiotic, and Diagnostic Assay Development

Streptococcus pneumoniae (S. pneumoniae) bacteria, or pneumococcus, can cause many types of illnesses. These range from ear and sinus infections to life-threatening conditions such as pneumonia, bloodstream infections, and meningitis. Pneumococci are surrounded by a polysaccharide capsule, which is thought to help it evade the immune system. Presently, over 90 known serotypes of S. pneumoniae have been identified, of which only a minority produce the majority of pneumococcal infections; a serotype is defined by a unique pneumococcal capsule structure.

Real-Time RT-PCR Detection of Scrub Typhus Total Nucleic Acid Assay with High Sensitivity and Specificity

Scrub typhus is a bacterial disease caused by Orientia tsutsugamushi (O. tsutsugamushi or Ots) that is spread to people through bites of infected chiggers (larval mites). The most common symptoms can include fever, headache, body aches, and sometimes rash. Severe illness can lead to organ failure and bleeding which can be fatal if left untreated. Most cases of scrub typhus occur in Asia Pacific countries, however, recent reports document establishment in the Arabian Peninsula, Chile, and possibly Kenya.

CC Chemokine Receptor 5 DNA, New Animal Models and Therapeutic Agents for HIV Infection

Chemokine receptors are expressed by many cells, including lymphoid cells, and function to mediate cell trafficking and localization. CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways.