Immunoassay-derived Protein Biomarkers of Atherosclerotic Cardiovascular Disease Risk

This technology includes a combination of 6 protein biomarkers and clinical risk factors to be used as an In Vitro Diagnostic Multivariate Index Assay (IVDMIA) that can improve the identification of individuals at high risk for atherosclerotic cardiovascular disease (ASCVD). Incorporation of novel protein biomarkers of ASCVD risk into risk assessment algorithms may improve their ability to identify individuals at high risk for ASCVD.

Discovery of an imidazo[1,2-a]pyridines with Anticancer Properties

This technology includes a series of imidazo[1,2-a]pyridines with potent inhibition of FLT3, which retains potent binding and activity against FLT3 tyrosine kinase domain and gatekeeper mutations. This chemotype exhibits superior anti-leukemic activity against the common clinically-relevant FLT3-mutant acute myeloid leukemia (AML) in vitro and in vivo. Tyrosine kinase domain mutations are a common cause of acquired resistance to FLT3 inhibitors used to treat FLT3-mutant AML. This invention builds upon an earlier IP position with new analogs.

Discovery of an imidazo[1,2-a]pyridines with Anticancer Properties

This technology includes a series of imidazo[1,2-a]pyridines with potent inhibition of FLT3, which retains potent binding and activity against FLT3 tyrosine kinase domain and gatekeeper mutations. This chemotype exhibits superior anti-leukemic activity against the common clinically-relevant FLT3-mutant acute myeloid leukemia (AML) in vitro and in vivo. Tyrosine kinase domain mutations are a common cause of acquired resistance to FLT3 inhibitors used to treat FLT3-mutant AML. This invention builds upon an earlier IP position with new analogs.

Compositions and Methods for Reducing Serum Triglycerides

This technology includes a vaccine for lowering plasma triglycerides by inducing the formation of autoantibodies against either ANGPTL3 or ANGPTL4, which are inhibitors of Lipoprotein Lipase. This was done by conjugating synthetic peptides based on ANGPTL3 or ANGPTL4 to virus- like particles (VLPS). Injection of the vaccine in animal models was shown to induce the autoantibody against the target and to lower plasma triglycerides.

High Relaxivity Mulitivalent Gadolinium on a Peptide Scaffold for Targeted MRI Applications in Disease Diagnosis

This technology includes a peptide containing alternating Alanine and Lys(DOTA-Gd) residues can be used to increase the MRI relaxivity of a peptide. The low molecular weight construct can be appended to proteins, antibodies and peptides to increase MRI signals. This approach offers advantages over previous dendrimeric constructs.

Astrocyte Differentiation of Neural Stem Cells with StemPro Embryonic Stem Cell Serum Free Medium for Research and Potential Therapeutic Use

This technology includes an innovative method for differentiating astrocytes from neural stem cells (NSCs). The process involves using Life Technologies StemPro embryonic stem cell serum-free medium to initially guide NSCs towards a neuronal lineage. Over a period of 28-35 days, as the cells are continually passaged, neurons gradually die off, leading to the proliferation of astrocytes. By the end of this differentiation protocol, approximately 70% of the cells exhibit markers characteristic of mature astrocytes, specifically GFAP.

Mast Cell Line for Research on Allergies and Inflammatory Diseases

Reactive mast cells are the culprit in allergic diseases and have also been implicated in other diseases ranging from autoimmune disorders to cancer to atherosclerosis. These immune sentinel cells normally defend against parasites and bacteria, but sometimes they overreact to harmless intruders, such as pollens or plant oils, releasing granules loaded with inflammation-inciting molecules, such as histamine, as well as various proteases and cytokines that cause allergic and inflammatory reactions. 

Innovative Techniques and Reagents for Improved Genetic Engineering

The development of restriction enzyme technology in the 1970s was a breakthrough in molecular biology research. For the first time, scientists were able to cut DNA at specific sites, and insert sequences with matching ends. However, the technology was limited to insertion at particular sites in the host vector, and the size of the inserted DNA quickly became a limiting factor.