Staphylococcus Epidermidis Isolates from Human Skin Samples for Use as Clinical Molecular Markers

This technology includes a catalog of commensal and pathogenic staphylococci from human skin for utilization as clinical molecular markers of skin conditions and infections. The study of microbial diversity of human skin in both healthy and disease states is important to develop tools to track infections, outbreaks, and multi-drug resistant organisms, particularly in atopic dermatitis, eczema and other microbial-associated infections. Commensal skin S. epidermidis have an open pan-genome and show considerable diversity between isolates.

Three-Dimensional Respiratory Epithelial Tissue Constructs With Perfusable Microvasculature

The invention provides two vascularized, multi-chip models for the alveoli and the small airway. Both models comprise a perfusable three-dimensional (3D) microvascular network consisting of human primary microvascular endothelial cells, fibroblasts, and pericytes with a differentiated lung epithelial layer exposed at the air-liquid interface (ALI) on top, built on a high-throughput, 64-chip microfluidic plate platform. The platform does not require the support of a permeable membrane and the epithelial cells are directly seeded on the perfused microvascular network.

Lymphoblastoid Cell Lines with a Specific Allele of ABCA7 Gene for the Screening of Small Molecules for Therapeutic Development

This technology includes lymphoblastoid cell lines from individuals genotyped as carrying the minor (G) allele of ABCA7 SNP rs113809142 [ss491752998; SNV-chr19-1007244], to be used for small molecule screening and eventual therapeutic development. The ABCA7 gene is the ATP-binding cassette, sub-family A (ABC1), member 7. It encodes a protein that is a transporter and has been associated with such diseases as neonatal respiratory failure and Asperger's syndrome. It is also known to play a role in phagocytosis of apoptotic cells by macrophages and may mediate cholesterol efflux.

DNA Methylation Based Non-invasive Blood Diagnostic Assay for Precision Cancer Detection and Classification

This technology includes a panel of 46 genomic loci of DNA methylation (represented by CpG dinucleotides on different chromosomes) with application in blood-based cancer screening. The markers robustly distinguish tumor from normal samples using 8 loci and classify 13 different tumor types. Using 39 loci, inventors were able to discriminate between individual tumor types or peripheral blood. In 4052 tumor samples from 13 tumor types, the true positive rate of classification was 91.4%.

Mouse Model of Hutchinson-Gilford Progeria Syndrome (HGPS) and Vascular Abnormalities (G608G) mutated form of human LNMA) for Therapeutic Development

Children with Hutchinson-Gilford progeria syndrome (HGPS) suffer from acceleration of certain aging symptoms, mainly cardiovascular disease that generally leads to death from myocardial infarction and/or stroke. The cause of HGPS has been discovered to be a de novo point mutation in lamin A (LNMA) gene. NHGRI Scientist have generated a transgenic mouse model of HGPS. This mouse carries a bacterial artificial chromosome (BAC) with a De novo mutation 1824 C to T (G608G) mutated form of human LNMA.

Human Cell Lines with NGLY1 Mutations for the Study of NGLY1 Deficiency and Therapeutic Development

Congenital disorders of glycosylation (CDGs) are a group of inborn errors characterized by abnormalities in the process of glycosylation of biomolecules. Although more than 100 different CDGs have been reported, only one has been thoroughly described, namely NGLY1 deficiency or NGLY1-CDG. NGLY1 encodes N-glycanase 1, an enzyme involved in the cytosolic degradation of misfolded glycoproteins and other glycoproteins bound for degradation.

First-in-class Small Molecule Agonists of the Insulin-like (INSL3) Peptide Receptor RXFP2 and Uses in Bone Disorders and Fertility

Recent studies have identified the G-protein-coupled receptor (GPCR) for insulin-like 3 peptide (INSL3), relaxin family peptide receptor 2 (RXFP2), as an attractive target for the treatment of bone diseases such as osteoporosis and rare bone diseases such as osteogenesis imperfecta. Currently, the most effective available treatment for osteoporosis is an expensive hormone therapy that requires daily injections. A stable, orally deliverable drug is a much more desirable alternative. Our RXFP2 agonists perform as well as the natural ligand INSL3 in cellular assays.

Human Fibroblast Cell Lines with PMM2 Congenital Disorder of Glycosylation for Therapeutic Development

Congenital disorders of glycosylation (CDGs) are inherited disorders of abnormal protein glycosylation that affect multiple organ systems. More than 100 different CDGs have been described, affecting protein and lipid glycosylation. NHGRI investigators have been able to isolate fibroblasts from patients with PMM2 (phosphomannomutase)-CDG, also known at CDG type Ia, which is an inherited, broad-spectrum disorder with developmental and neurological abnormalities.

Human Cell Lines with Mannosyl Oligosaccharide Glucosidase (MOGS) Defect for the Study and Prevention of Infection

This technology includes human cell lines from patients who have genetic defects in MOGS, the gene encoding mannosyl-oligosaccharide glucosidase, causing the rare congenital disorder of glycosylation type IIb, also known as MOGS-CDG. This defects appears to impair the ability of viruses to infect a second round of cells, which can be used to study and prevent infections. This is likely related to impaired viral replication and cellular entry. This finding has implications for Ebola and Zika, as well as other viral infections.