Novel Tocopherol and Tocopheryl Quinone Derivatives as Therapeutics for Lysosomal Storage Disorders

Novel tocopherol derivatives and tocopheryl quinone derivatives useful in the decrease of lysosomal substrate accumulation, the restoration of normal lysosomal size, and the treatment of lysosomal storage disorders (LSDs) are provided. The inventors have discovered that tocopherol and tocopheryl quinone derivatives with side chain modifications (such as terminal tri-halogenated methyl groups) exhibit improved pharmacokinetics, modulation of mitochondrial potential and restoration of some LSDs phenotypes.

Monoclonal Antibodies That Recognize the Human Type I Interferon Receptor and Block Interferon Signaling

Type I interferons play a critical role in both innate and adaptive immunity through the stimulation of the IFNAR1 which initiates interferon signaling in response to viral and bacterial infections. However, abnormal interferon signaling is associated with human diseases, such as lupus. The present invention discloses six hybridomas that produce mouse monoclonal antibodies specific for the extracellular domain of human IFNAR1. Two of the monoclonal antibodies are able to bind IFNAR1 and reduce interferon signaling.

Real-time PCR and High Resolution Melt Analysis for Genotyping of Chlamydophila psittaci

This nucleic acid assay employs Light Upon Extension (LUX) chemistry and High Resolution Melt (HRM) analysis to detect and distinguish the different genotypes of Chlamydophila psittaci. C. psittaci is an atypical pathogen which may result in severe pneumonia upon infection of birds, mammals and humans (depending on inter-relationships between host and pathogen genotypes). Presently, C. psittaci clinical identification is achieved by a cumbersome and time-intensive mix of ompA gene sequencing, microarray analysis, RFLP and/or serological testing.

Method for Finding Usable Portion of Sigmoid Curve (the Taylor Method), Improved Assay Readouts, and Enhanced Quality Control/Assurance

CDC researchers have developed algorithmic methods for determining sigmoid curve optimums and calculating component concentrations. Sigmoid curves are commonly generated in bioassays and used to calculate results. Various techniques have been used to define the curve, analyze the observations, and calculate a concentration. This technology is an algorithmic approach to identifying the usable portion of a sigmoid curve.

Antigen, Encoding Gene, Related Monoclonal Antibody and Hybridoma Clones for Streptococcus pneumoniae Serological Diagnostics

This CDC developed invention pertains to Streptococcus pneumoniae protein "pneumococcal fimbrial protein A (PfpA)," as well as the encoding pfpA gene. S. pneumoniae linked pneumococcal disease is prevalent among the very young, the elderly and also immunocompromised individuals. This invention covers the breadth of directly PfpA-related technology that might be employed for development of diagnostic tests for S. pneumoniae and/or vaccines directed against the pathogen.

Multi-Antigenic Peptide(s) Vaccine and Immunogen for Conferring Streptococcus pneumoniae Immunity

Disease caused by Streptococcus pneumoniae (pneumococcus) is an important cause of morbidity and mortality in the United States and developing countries. Pneumococcal disease is prevalent among the very young, the elderly and immunocompromised individuals. This invention is an improved, immunogenic peptide construct consisting of a combination of antigenic epitopes of the PsaA (37-kDa) protein from S. pneumoniae.

Enterovirus Molecular Diagnostic Test Kit

CDC researchers have developed a reverse transcription/semi-nested polymerase chain reaction (RT-snPCR) assay for diagnosis of enterovirus infections within clinical specimens. Clinical laboratories currently identify enteroviruses by virus isolation and subsequent virus neutralization tests, or serological assays. In addition to being time consuming, these approaches are labor, cost and material intensive.

Methods for the Simultaneous Detection of Multiple Analytes

CDC researchers have developed a method of simultaneously detecting and distinguishing multiple antigens within a biological sample. Epidemiological and vaccine studies require species serotype identification. Current methods of serotyping are labor intensive and can easily give subjective, errant results. This technology utilizes serotype specific antibodies bound to fluorescent beads, allowing for simultaneous single tube capture and detection of multiple antigens in one rapid, high-throughput flow cytometry assay.

Peptide Sequences for Chlamydophila pneumoniae Vaccine and Serological Diagnosis

CDC researchers have isolated select Chlamydophila pneumoniae peptide epitopes for development of vaccines and diagnostic assays. Currently, C. pneumoniae infection of humans has been linked to a wide variety of acute and chronic diseases, such as asthma, endocarditis, atherosclerotic vascular disease, chronic obstructive pulmonary disease, sarcoidosis, reactive arthritis and multiple sclerosis. There is presently no available peptide vaccine for the pathogen and reliable and accurate diagnostic methods are limited.