A Diagnostic Kit for Assessing Exposure or Infection by the Koala Family of Retroviruses

This invention relates to a diagnostic kit for assessing exposure to or infection by a koala retrovirus. The kit consists of specific primers and probes for the detection of three distinct subtypes of infectious koala retrovirus and may be useful in various species, including humans, primates, and koalas.

Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

Generation of mutant mouse alleles that functionally disrupt production of BDNF from its ndividual promoters

This technology relates to a mouse model that improves an existing method of disrupting the production of the BDNF protein in specific parts of the brain. A current avenue of research seeks to examine how gene expression may effect long-lasting changes in the nervous system. Previous work has resulted in a mouse line in which the production of BDNF was disrupted. However, these mice had an inadvertent genetic component left in: a neomycin cassette. This unintentional addition led to significant deleterious effects.

Diagnosis and Treatment of Pediatric Acute Neurologic Syndrome with Antineuronal Antibodies

The invention is a panel of five tests of patient sera for immune responses that may attack the brain and lead to the characteristic symptoms of pediatric acute neurologic syndrome (PANS). PANS is a condition defined by a sudden onset of obsessive-compulsive symptoms, eating restrictions, and other cognitive and/or behavioral symptoms. Currently, the diagnosis of PANS is made when other possible symptoms are ruled out, a diagnosis of exclusion.

Stopping Neurogenesis in Transgenic Mice and Rat Models that Express the HSV-thymidine kinase Gene in Neuronal Precursor Cells

This invention relates to novel mouse and rat models that permit the temporal death of neuronal precursor cells at any time point. Other existing methods of decreasing neurogenesis are relatively non-specific (e.g., injecting glucocorticoids) or require expensive equipment (e.g., focal x-irradiation)
These mice and rats are being used to inhibit adult neurogenesis in order to study the normal function of adult neurogenesis and to model disease states thought to feature decreased neurogenesis, such as chronic stress, anxiety, and depression.

Detecting Levels of Chymotrypsin and Amylase using Rabbit Polyclonal Antibodies Generated from Purified Human Enzymes

The invention relates to rabbit antisera raised against purified human chymotrypsin and amylase. Both chymotrypsin and amylase are produced by the pancreas and play important roles in digestion. Abnormal levels of chymotrypsin and amylase have been known to occur with multiple pancreas-related disorders, including pancreatitis. Measuring levels of these two enzymes using these polyclonal antibodies can help determine if a pancreas is functioning correctly.

Novel NMDA ligands that are specific and selective to the NR2B subunits based on the derivatives of 7-methoxy-3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol

This invention includes the design and synthesis of ligands that bind selectively and specifically to the NR2B subunit of the NMDA receptor. The NMDA receptor is thought to play a role in the pathophysiology of psychiatric disorders, including depression, stroke, drug addiction, and neuropathic pain. Existing ligands to the NMDA receptor are widely used to treat these conditions.

Radioligand for imaging brain PDE4 subtype D receptors with positron emission tomography

The technology relates to the first radioligands that can be used to image and quantify the enzyme phosphodiesterase subtype D (PDE4D). The PDE4D proteins have a role in carrying out signal transduction pathways in several cell types and is thought to be the key target of various antidepressants. Current work with imaging the radioligands in monkey brains using positron emission tomography (PET) has been successful, and further work with humans is needed.

Longer-lived Mouse Models for Studying Gaucher Disease

The invention is a novel longer-lived mouse model for Gaucher disease. Gaucher disease is a genetic disorder that results from deficiencies in the enzyme glucocerebrosidase (GBA). The use of animal models to study how the disease progresses has been invaluable in research of this disorder. However, existing mouse models have been limited due to early mortality because the GBA enzyme plays an important role in lysosomal storage.

OASIS: Automated brain lesion detection using cross-sectional multimodal magnetic resonance imaging

This invention is a novel statistical method for automatically detecting lesions in cross-sectional brain magnetic resonance imaging (MRI) studies. OASIS uses multimodal MRI from one image acquisition session and produces voxel-level probability maps of the brain that quantifies the likelihood that each voxel is part of a lesion. Binary lesion segmentations are created from these probability maps using a validated population-level threshold. In this application, fluid attenuated inversion recovery (FLAIR), proton density (PD), T2-weighted, and Tl-weighted volumes were used.