Generation of mutant mouse alleles that functionally disrupt production of BDNF from its ndividual promoters

This technology relates to a mouse model that improves an existing method of disrupting the production of the BDNF protein in specific parts of the brain. A current avenue of research seeks to examine how gene expression may effect long-lasting changes in the nervous system. Previous work has resulted in a mouse line in which the production of BDNF was disrupted. However, these mice had an inadvertent genetic component left in: a neomycin cassette. This unintentional addition led to significant deleterious effects.

Imaging Inflammation using PET Radioligands that Target Translocator Protein 18?kDa with High Affinity Regardless of Genotype

This technology includes a group of radioligands that label inflammatory cells specifically, accurately, and across different genotypes and can be detected using Positron Emission Tomography (PET). The radioligands target the Translocator protein 18 kDa (TSPO) receptor which is present on the outer mitochondrial membrane and is involved in the production of steroids. Current TSPO radioligands either lack specificity or have highly variable inter-subject sensitivities due to TSPO genotypic differences.

Stopping Neurogenesis in Transgenic Mice and Rat Models that Express the HSV-thymidine kinase Gene in Neuronal Precursor Cells

This invention relates to novel mouse and rat models that permit the temporal death of neuronal precursor cells at any time point. Other existing methods of decreasing neurogenesis are relatively non-specific (e.g., injecting glucocorticoids) or require expensive equipment (e.g., focal x-irradiation)
These mice and rats are being used to inhibit adult neurogenesis in order to study the normal function of adult neurogenesis and to model disease states thought to feature decreased neurogenesis, such as chronic stress, anxiety, and depression.

Diagnosis and Treatment of Pediatric Acute Neurologic Syndrome with Antineuronal Antibodies

The invention is a panel of five tests of patient sera for immune responses that may attack the brain and lead to the characteristic symptoms of pediatric acute neurologic syndrome (PANS). PANS is a condition defined by a sudden onset of obsessive-compulsive symptoms, eating restrictions, and other cognitive and/or behavioral symptoms. Currently, the diagnosis of PANS is made when other possible symptoms are ruled out, a diagnosis of exclusion.

Detecting Levels of Chymotrypsin and Amylase using Rabbit Polyclonal Antibodies Generated from Purified Human Enzymes

The invention relates to rabbit antisera raised against purified human chymotrypsin and amylase. Both chymotrypsin and amylase are produced by the pancreas and play important roles in digestion. Abnormal levels of chymotrypsin and amylase have been known to occur with multiple pancreas-related disorders, including pancreatitis. Measuring levels of these two enzymes using these polyclonal antibodies can help determine if a pancreas is functioning correctly.

Novel NMDA ligands that are specific and selective to the NR2B subunits based on the derivatives of 7-methoxy-3-(4-phenylbutyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol

This invention includes the design and synthesis of ligands that bind selectively and specifically to the NR2B subunit of the NMDA receptor. The NMDA receptor is thought to play a role in the pathophysiology of psychiatric disorders, including depression, stroke, drug addiction, and neuropathic pain. Existing ligands to the NMDA receptor are widely used to treat these conditions.

Radioligand for imaging brain PDE4 subtype D receptors with positron emission tomography

The technology relates to the first radioligands that can be used to image and quantify the enzyme phosphodiesterase subtype D (PDE4D). The PDE4D proteins have a role in carrying out signal transduction pathways in several cell types and is thought to be the key target of various antidepressants. Current work with imaging the radioligands in monkey brains using positron emission tomography (PET) has been successful, and further work with humans is needed.

An Antibody to Detect Phosphorylation (S1459) of the GRIN2A Gene to Study Epilepsy and Autism Spectrum Disorder

This technology relates to the generation and use of an antibody that recognizes the S1459 phosphorylated site of the GRIN2A gene, which encodes the GluN2A subunit of the NMDA receptor. This gene is widely accepted as an epilepsy-causative gene and has been implicated in autism spectrum disorder (ASD). The S1459 phosphorylation site was selected based on an identified mutation in an epilepsy patient. This antibody can be used to specifically visualize the localization of the phosphorylated version of the GRIN2A protein product in the brain.

An Antibody to Detect Neuroligin 4Y (NLGN4Y) to Study Autism Spectrum Disorder and Intellectual Disability

This technology includes the generation and use of an antibody that can detect endogenous Neuroligin 4Y, NLGN4Y, a cell adhesion molecule on the X-chromosome. NLGN4Y is part of an X-Y pair with NLGN4X, which has been implicated with autism spectrum disorder (ASD) and intellectual disability. ASD has a sex bias etiology that is not well understood, affecting four times as many males as females. Previous work has revealed a potential pathogenic mechanism for male-bias based on mutations in NLGN4X and NLGN4Y. The use of the NLGN4Y antibody could be used to study potential mechanisms.

Neutralizing the neurodegenerative effect of ALS-related HERV-K using antibodies

This technology relates to the therapeutic use of antibodies to decrease the potential neurodegenerative effect of the HERV-K retrovirus. Previous work has shown that patients with Amyotrophic Lateral Sclerosis (ALS) can have HERV-K activation. In animal models, activation of HERV-K can lead to neurodegenerative symptoms similar to those exhibited by ALS patients. This neurodegenerative effect is thought to be caused by the release of HERV-K envelope proteins into the extracellular space. Work with monoclonal antibodies in vitro has neutralized the toxicity of this protein.