Knockout and Conditional Knockout Mice-GPR116

Pulmonary surfactant plays a critical role in preventing alveolar collapse by decreasing surface tension at the alveolar air-liquid interface. Surfactant deficiency contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), common disorders that can afflict patients of all ages and carry a mortality rate greater than 25%. Excess surfactant leads to pulmonary alveolar proteinosis.

BODIPY-FL Nilotinib (Tasigna) for Use in Cancer Research

The National Cancer Institute''s Laboratory of Cell Biology is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize bodipy conjugated tyrosine kinase inhibitors that are currently used in the clinic for the treatment of CML or gastric cancers. We are also interested in evaluating third generation tyrosine kinase inhibitor derivatives as modulators of ABC drug transporters to improve the efficiency of chemotherapy in animal (mouse) model system.

Improved Antibodies Against ERBB4/HER4

The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Section on Molecular Neurobiology is seeking statements of capability or interest from parties interested in collaborative research to further evaluate or commercialize specific rabbit monoclonal antibodies generated against the ErbB4 receptor (also known as HER4) that have been validated for specificity using tissue sections and extracts from ErbB4 knockout mice.

Lentiviral Vectors with Dual Fluorescence/Luminescence Reporters

The National Cancer Institute’s Protein Expression Laboratory seeks parties to co-develop dual luminescent/fluorescent cancer biomarkers.

In research settings, visualization of  tumors or tumor cells is often done using either bioluminescence or fluorescence.  However, both of these methods have shortcomings: bioluminescence is not sensitive enough to sort individual tumor cells, and fluorescence cannot be used effectively to view internal tumors and is best used with surface tumors.

Use of the Ketamine Metabolite (R,6R)-hydroxynorketamine in Depression

This technology includes the identification and use of a ketamine metabolite, (2R,6R)-2-amino-2-(2-chlorophenyl)-6-hydroxycyclohexanone (HNK), for the treatment of depression. Ketamine is an NMDA receptor antagonist that exerts a rapid and sustained antidepressant and anti-suicidal effect. However, even low doses of ketamine has addictive and psychomimetic effects. The downstream metabolite, (2R,6R)-HNK, does not inhibit the NMDA receptor but recapitulates the antidepressant and anti-suicidal effect of ketamine.