Mouse Embryo Culture Chamber and Imaging System and Methods of Use

The culture of mouse embryos ex utero and continuous monitoring and imaging of embryos as they develop have applications in drug testing, genetic studies, and basic research on embryonic development. However, the embryo culture systems currently available for post-implantation embryos include rolling bottle culture systems, which do not permit imaging of the developing embryos and do not support the long-term survival and development of embryos ex utero.

Micro-Dose Calibrator for Pre-clinical Radiotracer Assays

Molecular imaging is a disease-specific targeting modality that promises much more accurate diagnoses of serious diseases such as cancer and infections. Agents are being continually developed with a view to clinical translation, with several such therapies requiring measurement of very small doses. Currently, there is no way of accurately measuring small amounts of radioactivity used in many pre-clinical tracer studies, as on-the-market commercial dose calibrators measure at too high a dose range, typically at 10-1000 µCi and higher.

A Specialized Tissue Collection Device for the Preservation and Transportation of Needle Biopsies

The ability to hold and transport tissue, especially needle biopsies in a pre-defined and controlled environment is critical for the preservation of biopsy samples in downstream analytic applications. Currently, tissue specimens are placed in open containers with variable, poorly controlled solutions applied to them, often in less than sterile conditions.  Evaluation of the tissue by examination through a stereoscope or similar approaches to determine adequacy is limited and requires manipulation of the tissue that can further damage the tissue.

High-Resolution and Artifact-Free Measurement and Visualization of Tissue Strain by Processing MRI Using a Deep Learning Approach

This technology includes a system for automatic artifact-free measurement and visualization of tissue strain by MRI at native resolution. The investigation of regional soft tissue mechanical strain can serve as a unique indicator for different related disorders. For example, measurement of myocardial tissue during contraction can help calculate, track, and assess cardiac stress. Currently, methods such as tagging MRI (tMRI) are used for imaging soft tissue deformation. Despite being well validated, methods such as tMRI suffer from low spatial and temporal resolution.

A Device to Measure Force Continuously During Handgrip Contraction and Relaxation for Myotonic Dystrophies

This invention relates to two devices that reliably, sensitively, and accurately measures force during handgrip contraction and subsequent relaxation. A delayed relaxation after a sustained and forceful handgrip is a cardinal symptom of myotonic dystrophies (DM). This delayed relaxation, handgrip myotonia, may be a therapeutic response biomarker in clinical trials.

A Mood-Machine-Interface as an Intervention for Emotional Self-Regulation in Real-Time

This technology relates to a closed-loop controller that is being developed as a phone app for emotional self-regulation in real-time. There is a significant association between emotion dysregulation and symptoms of depression, anxiety, eating pathology, and substance abuse, affecting millions worldwide. Consisting of a closed-loop controller that adjusts reward values in real-time according to individual mood response, the Mood Machine Interface technology compensates for adaptation to stimuli over time allowing it to generate substantial mood changes in the user.

Methods and Systems for Evaporation of Solvents and Solid Phase Extraction

There is an acute deficit in chemical synthesis with respect to benchtop tools that are specifically designed to address the capability and efficiency of certain key aspects of chemical synthesis, namely reaction preparation, product isolation, and solvent removal. Chemical research currently relies upon a variety of devices that function in a manner that is disconnected, as well as difficult to integrate and automate; collectively, these device challenges hinder the efficient isolation and purification of desired chemical synthesis products.