An Innovative Adapter for Expedited and Automated Thawing of viably Frozen Cells

This technology is a device and system for expediting the thawing frozen specimens (e.g., cryopreserved cells) contained in cryo-vials, offering a breakthrough solution for researchers seeking efficiency and precision in their workflows. The device is equipped with a small elongated tubular adaptor that suspends a cryo-vial of frozen cells over a centrifuge tube containing culture medium in an inverted position. With a focus on speed, efficiency and automation, the adaptor dramatically expedites the process of recovering viable cells from frozen specimens.

Trans-auricular Left Atrial Appendage Ligation to Prevent Thrombosis

This technology includes an interventional device to occlude the left atrial appendage to prevent thrombus formation. Atrial fibrillation is the most common cardiac arrhythmia and is associated with formation of thrombus in the left atrial appendage. Standard preventative treatment involves anticoagulation, which is not tolerated by all patients. Existing devices necessitate improvement because they need trans-septal puncture and anticoagulation to prevent thrombus or are prone to life-threatening complications.

Single Scan Bright-blood and Dark-blood Phase Sensitive Inversion Recovery (PSIR) Late Gadolinium Enhancement (LGE) for Cardiovascular Magnetic Resonance (CMR) Imaging

This technology includes a technique to improves detection of myocardial scar compared with conventional bright-blood late gadolinium enhancement (LGE) techniques. Dark-blood late gadolinium enhancement (DB-LGE) improves tissue delineation with signal suppression of the blood pool based on T2-preparation pulse that is relatively independent from the blood flow velocities and improves scar detection in patients with known or suspected coronary artery disease.

Compatible 3-D Intracardiac Echography Catheter and System for Interventional Cardiac Procedures

This technology includes a versatile intravascular 3D intracardiac echocardiography (ICE) catheter that can operate under conventional X-ray and MRI for use during interventional cardiac procedures. The 3D MRICE and custom, GPU-based, real-time imaging system are also included. Structural heart disease affects more than 2.9% of the US population, and common interventional procedures can be difficult because of limitations in catheter devices and inadequate image guidance.

Vascular Anchoring Introducer Sheath for Interventional Cardiac Procedures

This technology includes a device and method for maintaining access to a location in the body while reducing or eliminating the potential for pulling an access device (i.e., catheter) back through an opening, such as a cardiac procedure. An introducer sheath includes a distal indented portion and a balloon, so that once placed in a desired location through tissue, the balloon can be inflated to anchor the sheath against retraction.

Free Breathing Motion Corrected Pixel-wise MRI Myocardial T1 Parameter Mapping for Clinical Cardiac Imaging

This technology includes a method for performing cardiac imaging without the need for the patient to hold their breath. Free breathing pixel-wise myocardial T1 parameter mapping includes performing a free-breathing scan of a cardiac region at a plurality of varying saturation recovery times to acquire a k-space dataset; generating an image dataset based on the k-space dataset; and performing a respiratory motion correction process on the image dataset.

Device for Closure of Transvascular or Transcameral Access Ports

This technology includes part of transcatheter aortic valve replacement and to enable non-surgical thoracic aortic aneurysm endograft repair. The invention enables a completely new way to access the arterial circulation to allow introduction of large devices, such as transcatheter aortic valve replacement, percutaneous left ventricular assist devices, and thoracic aortic endografts. It also can be used in most labeled and off-label applications of Amplatzer (AGA Medical, St Jude) nitinol occluder devices to occlude intracardiac holes and to allow non-surgical direct access to the heart.

Systems and Methods for Applying Pressure to the Heart for the Treatment of Tricuspid Valve Regurgitation

This technology includes structures and methods for cinching a band around the heart for treating conditions including tricuspid valve regurgitation (TR). When positioned appropriately along the atrioventricular groove, the band is tightened around the heart which narrows the tricuspid annulus and relieves TR.

Helical Guidewires and Related Systems for Transcatheter Heart Valve Procedures

This technology includes a guidewire purpose-built for delivery of bulky transcatheter heart valves (THV). Conventional THV guidewires are rigid and have a distal tip shaped like a pigtail to prevent apical ventricular perforation. This invention is a 3-dimensional helical or antihelical curve that can protect against apical perforation, possibly better, and that allows subtle 3-mensional deflection to aid the operator in achieving coaxiality or overcoming delivery obstacles such as calcific spicules.

A Method to Guide Protocol Development for Magnetic Resonance Thermometry

This technology includes tools to guide optimization of thermometry imaging/post-processing protocols. Proton Resonance Frequency (PRF) thermometry is a widely used Magnetic Resonance Imaging (MRI) based technique to monitor changes in tissue temperature in response to thermal therapy. The use of PRF thermometry with thermal therapy procedures is indispensable to ensure delivery of desired thermal dose to the target tissue, and to minimize unintended damage to the normal tissue.