Intranasal Dry Powder Inhaler for Improved Delivery of Vaccines and Therapeutics

This Intranasal Dry Powder Inhaler (DPI), developed with Creare, Inc., allows low-cost delivery of powder vaccines. Nasal delivery has numerous advantages compared to traditional injected vaccines, including: 1) safe, needle-less administration by minimally-trained staff or patient; 2) better protection due to mucosal and cross-protection; and 3) decreased biohazard waste.

Intranasal Nebulizer with Disposable Drug Cartridge for Improved Delivery of Vaccines and Therapeutics

Intranasal delivery is a simple, inexpensive and needle-free route for administration of vaccines and therapeutics. This intranasal delivery technology, developed with Creare LLC., includes low-cost, disposable drug cartridges (DDCs) that mate with a durable hand-held device. The rechargeable-battery-powered device transmits ultrasonic energy to the DDC to aerosolize the drug and is capable of performing for eight hours at 120 vaccinations per hour. Potential applications for this platform technology include intranasal vaccination (e.g.

Warning System for Mobile Machinery Hazardous Zones

This invention relates to a warning system designed to protect individuals working near hazardous machinery. The system consists of a proximity-warning transmitter mounted to hazardous machinery and a receiver, worn by a worker, capable of detecting the transmitter signal. This worker-safety system can incorporate visual alerts and audible alerts. It also allows automatic shutdown of machinery upon receiver activation and may be particularly useful in the mining industry.

Personal Air Sampler for Collecting Airborne Aerosol Particulates for Molecular Analysis by Size

This invention consists of a sampling apparatus that utilizes one or more cyclone separators to collect airborne particles from the atmosphere. The apparatus not only separates out aerosols from the atmosphere, but also serves as a collection tube for aerosol particles. Through its unique design, this CDC-developed apparatus is able to use the centrifugal force of the air flow on aerosolized particles forcing them to separate by size. Since the sample is collected directly in a microcentrifuge tube, in situ analysis of the ambient particulates can be performed.

Entangling/Entrapping Synthetic Setae for Control of Insects and Other Pests

In nature, some beetle larvae possess specialized barbed hastate setae that serve as an entanglement defense mechanism and incapacitate other insects. CDC researchers have developed synthetic setae for control and entrapment of insects and other pests. While smaller synthetic setae can trap mosquitoes and small insects, larger “macro” setae can be used for entrapment of bats, rodents, etc. Once used, the setae can be "reset" by a vigorous shaking of the fabric.

Non-radioactive, Miniature Bipolar Aerosol Particle Charger for Personal, Portable Instrumentation

This CDC developed invention is a novel device for a miniature, nonradioactive bipolar charger to electrically charge aerosol particles for use in personal and portable aerosol instrumentation. Such devices are an integral component of aerosol instruments employing electrical mobility-based techniques. Current, commercial state-of-the-art mobility instruments employ aerosol chargers using radioactivity to achieve bipolar particle charging and, therefore, are not suitable for field-portable instruments.

Use of Detector Response Curves to Optimize Settings for Mass Spectrometry

This CDC developed optimization technology allows one to characterize the behavior of the coefficient of variation (CV) for a range of mass spectrometer machine settings. Surface-enhanced laser desorption/ionization (SELDI) and matrix-assisted laser desorption/ionization (MALDI) are used for the early detection of numerous diseases, for example cervical cancer . A critical step in the analytical process is the optimization of experiment and machine settings to ensure the best possible reproducibility of results, as measured by the CV.

Sensitive Method for Detection and Quantification of Anthrax, Bordetella pertussis, Clostridium difficile, Clostridium botulinum and Other Pathogen-Derived Toxins in Human and Animal Plasma

CDC research scientists have developed a method to identify and quantify the activity of pathogenic bacterial adenylate cyclase toxins by liquid chromatography tandem mass spectrometry (LC-MS/MS). Bacterial protein toxins are among the most potent natural poisons known, causing paralysis, immune system collapse, hemorrhaging and death in some cases.

A Simple Colorimetric Assay for Anti-malarial Drugs Quality Assurance and Rapid, On-site Counterfeit Detection

This CDC assay aims to lessen the anti-malarial drug counterfeiting epidemic by testing for the artemisinin-type drugs (the active compound), through the use of a simple, inexpensive colorimetric test. Poor quality and counterfeit drugs pose an immediate threat to public health and undermine malaria control efforts, resulting in resistant-parasites and invalidates effective compounds, i.e.

Device to Measure Muscle Contractile-Relaxant and Epithelial Bioelectric Responses of Perfused, Intact Tracheal Airways Tissue In Vitro

CDC and collaborative researchers have developed a device allowing for simultaneous measurement of smooth muscle contractile/relaxant activity and transepithelial potential difference (Vt) [or short circuit currents (Isc)] and resistance (Rt) within an intact airway in vitro. Investigation of the underlying mechanisms of lung diseases, such as asthma or cystic fibrosis, involves understanding the roles of airway smooth muscle and epithelium.