Exposure and Activity Detection Assays for Anthrax Lethal Factor and Lethal Toxin
Improved Botulism, Botulinum Neurotoxin Type-E Diagnostics
Multiplexing Homocysteine in Primary Newborn Screening Assays Using Maleimides as Select Derivatization Agents
4G10, a Monoclonal Antibody Against the Chemokine Receptor CXCR4, Raised Against a Synthetic Peptide of 38 Residues in Length Derived from the N-terminal Sequence of CXCR4
Method of Producing Immortalized Primary Human Keratinocytes for HPV Investigation, Testing of Therapeutics, and Skin Graft Generation
A Novel Virus-Based Expression System
Currently available poxvirus vectors for humans and other animals exhibit suboptimal expression of recombinant gene(s) and high expression of vector proteins which causes weak immunogenicity and high anti-vector immune response.
Anti-Puromycin Antibodies Illuminate the World of Cellular Protein Translation
The Ribopuromycylation (RPM) technology, developed by Dr. Jon Yewdell and Dr. Alexandre David, offers a powerful and universal method for visualizing and studying protein translation within cells. RPM involves the use of puromycin, a molecule that mimics a tyrosyl-tRNA and terminates translation by becoming covalently incorporated into the nascent protein chain's C-terminus within the ribosome's A site. This technique enables the immobilization of puromycylated nascent protein chains on ribosomes when chain elongation inhibitors like cycloheximide or emetine are utilized.
Optical Trap Methods to Determine the Viscoelastic Properties of Biological Materials
Optical traps (optical tweezers) have a focused laser beam able to trap a small bead at its focus, and are used to measure the microrheology of gels and other materials. They have recently been used to characterize properties of living cells, however issues of image spatial resolution and limited depth of interrogation have prevented application of an optical trap to measure microrheological (flow of matter) properties in complex (non-uniform) materials, such as multi-cellular systems or living organisms.
Human Monoclonal Antibodies to Generate Chimeric Antigen Receptor (CAR) T-cells to Treat Patients with Advanced Clear Cell Renal Cell Carcinoma (ccRCC).
This technology includes six human monoclonal antibodies (mAbs) that target tumor antigens derived from the CT-RCC HERV-E (human endogenous retrovirus type E) to generate Chimeric Antigen Receptor (CAR) T cells to treat patients with advanced clear cell renal cell carcinoma (ccRCC). These mAbs were identified from Adagene Inc’s human antibody phage library, and data show that majority of these mAbs only bind to CT-RCC HERV-E+ ccRCC cells, which express TM but not CT-RCC HERV-E non-expressing ccRCC cells nor non-RCC cells.