Sensitive Method for Detection and Quantification of Anthrax, Bordetella pertussis, Clostridium difficile, Clostridium botulinum and Other Pathogen-Derived Toxins in Human and Animal Plasma

CDC research scientists have developed a method to identify and quantify the activity of pathogenic bacterial adenylate cyclase toxins by liquid chromatography tandem mass spectrometry (LC-MS/MS). Bacterial protein toxins are among the most potent natural poisons known, causing paralysis, immune system collapse, hemorrhaging and death in some cases.

Exposure and Activity Detection Assays for Anthrax Lethal Factor and Lethal Toxin

This CDC developed invention identifies an assay for extremely fast and sensitive detection of Bacillus anthracis lethal toxin (LTx), the toxin responsible for the lethal effects of anthrax infection. This assay has already been successfully tested in animals and will allow for early detection of anthrax exposure and screening of lethal factors to monitor anthrax toxicity, for example for vaccine trial candidates.

Improved Botulism, Botulinum Neurotoxin Type-E Diagnostics

CDC researchers have improved upon a prior, HHS patented mass spectrometry-based Endopep-MS assay that is able to rapidly detect and differentiate all seven botulinum neurotoxin (BoNT) types A to G. This current improvement comprises the addition of two optimized substrate peptides that increases the assay's sensitivity,relative to prior substrates, for botulinum neurotoxin type-E (BoNT/E) by greater than 100 fold.

Multiplexing Homocysteine in Primary Newborn Screening Assays Using Maleimides as Select Derivatization Agents

Homocystinuria (HCU), a group of inherited disorders, causes symptoms ranging from failure to thrive and developmental delays in infants or young children to abnormal blood clots with onset in adults.1 Approximately 1 in 200,000 to 335,000 people have HCU globally.2

4G10, a Monoclonal Antibody Against the Chemokine Receptor CXCR4, Raised Against a Synthetic Peptide of 38 Residues in Length Derived from the N-terminal Sequence of CXCR4

This invention identifies a monoclonal antibody (4G10) against the chemokine receptor CXCR4 and is a mouse IgG1 antibody. CXCR4 has been identified as a co-receptor mediating entry of HIV-1 into T cells. Subsequently, CXCR4 has been implicated in normal physiological functions, including activation of B cells and B cell progenitors and guiding their migration into the bone marrow (via its ligand SDF-1). CXCR4 also functions in T cell progenitor migration and neural progenitor stem cell activation.

Method of Producing Immortalized Primary Human Keratinocytes for HPV Investigation, Testing of Therapeutics, and Skin Graft Generation

One of the major limitations of using cultured keratinocytes for research studies is that primary keratinocytes senesce after a few passages. Keratinocytes from specific anatomical sites are also difficult to culture. Scientists at the NIH have demonstrated that primary keratinocytes, from several anatomical sites, when treated with a small-molecule inhibitor of the ROCK protein maintain a proliferative state and become immortal without genetic modification to the cells.

Anti-Puromycin Antibodies Illuminate the World of Cellular Protein Translation

The Ribopuromycylation (RPM) technology, developed by Dr. Jon Yewdell and Dr. Alexandre David, offers a powerful and universal method for visualizing and studying protein translation within cells. RPM involves the use of puromycin, a molecule that mimics a tyrosyl-tRNA and terminates translation by becoming covalently incorporated into the nascent protein chain's C-terminus within the ribosome's A site. This technique enables the immobilization of puromycylated nascent protein chains on ribosomes when chain elongation inhibitors like cycloheximide or emetine are utilized.

Optical Trap Methods to Determine the Viscoelastic Properties of Biological Materials

Optical traps (optical tweezers) have a focused laser beam able to trap a small bead at its focus, and are used to measure the microrheology of gels and other materials. They have recently been used to characterize properties of living cells, however issues of image spatial resolution and limited depth of interrogation have prevented application of an optical trap to measure microrheological (flow of matter) properties in complex (non-uniform) materials, such as multi-cellular systems or living organisms. 

Human Monoclonal Antibodies to Generate Chimeric Antigen Receptor (CAR) T-cells to Treat Patients with Advanced Clear Cell Renal Cell Carcinoma (ccRCC).

This technology includes six human monoclonal antibodies (mAbs) that target tumor antigens derived from the CT-RCC HERV-E (human endogenous retrovirus type E) to generate Chimeric Antigen Receptor (CAR) T cells to treat patients with advanced clear cell renal cell carcinoma (ccRCC). These mAbs were identified from Adagene Inc’s human antibody phage library, and data show that majority of these mAbs only bind to CT-RCC HERV-E+ ccRCC cells, which express TM but not CT-RCC HERV-E non-expressing ccRCC cells nor non-RCC cells.