HIV-1 Infection Detection Assay for Seroconverted HIV-1 Vaccine Recipients

Available for licensing and commercial distribution is a serological test specifically designed to distinguish between antibodies generated in HIV vaccine recipients and those generated in a natural HIV infection. The method is useful in HIV vaccine development and clinical studies as it can readily detect early breakthrough infections in seroconverted vaccine recipients, thus providing the information required to determine vaccine efficacy. The test kit includes diagnostic peptide fragments derived from human immunodeficiency virus-1 (HIV-1).

Multimeric Protein Toxins to Target Cells Having Multiple Identifying Characteristics

This technology relates to multimeric bacterial protein toxins which can be used to specifically target cells. Specifically, this is a modified recombinant anthrax toxin protective antigen (PrAg) that has been modified in several ways. First, the PrAg can be activated both by a metalloproteinase (MMP) and by urokinase plasminogen activator (uPA). Second, the native PrAg lethal factor (LF) binding site has been modified so that only a modified PrAg comprising two different monomers can bind anthrax LF.

A Rapid Method for Producing Antibodies

Antibodies are specialized proteins produced by the immune system which target and neutralize foreign materials, such as viruses or bacteria. Antibodies have a variety of useful applications in diagnostics, therapeutics, and as research reagents. Despite their widespread use there is no standard method to produce antibodies, and currently available methods are labor and time intensive.

Monoclonal Antibodies to Fentanyl Analogs for Research, Therapeutics, and Novel Diagnostics

Fentanyl is a synthetic opioid drug approved by the Food and Drug Administration for use as an analgesic (pain relief) and anesthetic. However, synthetic opioids, such as fentanyl, are prone to abuse and are the primary drivers of overdose related deaths in the United States. As little as two milligrams of fentanyl can be lethal. Furthermore, structural variants of fentanyl, often mixed with other drugs or counterfeit pills are illegally distributed without the user’s knowledge.

Time Efficient Multi-Pulsed Field Gradient (mPFG) MRI Without Concomitant Gradient Field Artifacts

Measuring and mapping nervous tissue microstructure noninvasively is a long sought-after goal in neuroscience. Clinically, several neuropathologies such as cancer and stroke, are associated with changes in tissue microstructure. Diffusion tensor imaging (DTI), which models diffusion anisotropy, is an ideal imaging modality to elucidate these changes. However, DTI provides a mean diffusion tensor averaged over the entire MRI voxel. This has limitations when applied to heterogeneous neural tissue.

Anti-Puromycin Antibodies Illuminate the World of Cellular Protein Translation

The Ribopuromycylation (RPM) technology, developed by Dr. Jon Yewdell and Dr. Alexandre David, offers a powerful and universal method for visualizing and studying protein translation within cells. RPM involves the use of puromycin, a molecule that mimics a tyrosyl-tRNA and terminates translation by becoming covalently incorporated into the nascent protein chain's C-terminus within the ribosome's A site. This technique enables the immobilization of puromycylated nascent protein chains on ribosomes when chain elongation inhibitors like cycloheximide or emetine are utilized.

Soluble Antigen-Based ELISA for the Detection of B. malayi Infections

The technology presented is a breakthrough in the diagnosis of lymphatic filariasis, specifically targeting the B. malayi pathogen. It encompasses a novel soluble antigen extract used in both IgG and IgG4-based ELISA tests, aimed at detecting the presence of the filarial infection. This innovation serves as a cornerstone for a CLIA-certified reference test, established and utilized in Dr. Nutman's laboratory since the late 1980s.

TACSTD2 in HCV Infection and Hepatocellular Carcinoma: Transcriptomics Insights

This technology involves studying the role of the Tumor-Associated Calcium Signal Transducer 2 (TACSTD2) gene in Hepatitis C Virus (HCV) infection and hepatocellular carcinoma. Researchers perform transcriptomics analysis on liver specimens from HCV-infected patients, identify TACSTD2 as a key gene, and create a stable cell line that overexpresses TACSTD2 to investigate its impact on HCV infection and replication. This technology aims to provide insights into the molecular mechanisms of HCV infection and its association with liver cancer.