Human Monoclonal Antibodies that Broadly Target Coronaviruses

An abstract for this invention was published in the Federal Register on June 10, 2022. The family of coronaviruses cause upper respiratory tract disease in humans and have caused three major disease outbreaks in recent history: the 2003 SARS outbreak, the 2012 MERS outbreak, and the current SARS-CoV-2 pandemic. There is an urgent need for strategies that broadly target coronaviruses, both to deal with new SARS-CoV-2 variants and future coronavirus outbreaks.

Potentiating Antibody Therapy for the Treatment of Cancer

This technology includes a strategy to target tumor cells that lost antigen following reaction with a therapeutic antibody by targeting the complement component C3d that has been deposited on target cells by the primary antibody. We previously generated a C3d-specific mouse/human chimeric antibody called C8xi and obtained proof of principle for the approach in two preclinical models. Here we summarize the generation of a new set of C3d targeting antibodies.

Human Monoclonal Antibodies to Generate Chimeric Antigen Receptor (CAR) T-cells to Treat Patients with Advanced Clear Cell Renal Cell Carcinoma (ccRCC).

This technology includes six human monoclonal antibodies (mAbs) that target tumor antigens derived from the CT-RCC HERV-E (human endogenous retrovirus type E) to generate Chimeric Antigen Receptor (CAR) T cells to treat patients with advanced clear cell renal cell carcinoma (ccRCC). These mAbs were identified from Adagene Inc’s human antibody phage library, and data show that majority of these mAbs only bind to CT-RCC HERV-E+ ccRCC cells, which express TM but not CT-RCC HERV-E non-expressing ccRCC cells nor non-RCC cells.

Antibody to Mitochondrial Uniporter (MCU

This technology includes a generated polyclonal antibody in rabbit that detects the mitochondrial uniporter (MCU) protein. This antibody was created by immunizing rabbits with a synthesized sequence of the MCU protein and can be used to identify and quantify MCU protein in various tissues. The polyclonal nature of the antibody ensures it recognizes multiple epitopes on the MCU, enhancing detection reliability. This technology is crucial for understanding MCU's role in mitochondrial function and mammalian physiology.

Immunogens, Compositions, and Methods for the Treatment of Dyslipidemia

This technology includes a novel vaccine for forming autoantibodies against apoC-III, a plasma enzyme that inhibits lipolysis. The vaccine can possibly be used to treat patients with high triglycerides and are at risk for pancreatitis and cardiovascular disease. This disclosure describes an ApoC3 immunogen that includes an antigenicApoC3 peptide linked to a bacteriophage virus-like-particle (VLP) immunogenic carrier.

Antibody Targeting of Cell Surface Deposited Complement Protein C3d as a Treatment for Cancer

This technology includes monoclonal antibodies (mAb) that specifically and with high affinity bind the final complement components C3dg and C3d (subsequently referred to as C3d), which can be used to kill tumor cells that carry C3d on their cell surface. We show that tumor cells of patients treated with the therapeutic anti-CD20 mAb ofatumumab carry C3d on the cell surface and can bind and be killed by addition of anti-C3 mAbs. In contrast, further addition of more ofatumumab has only minimal effects.

Monoclonal Anti-mouse and Anti-human TL 1A Antibodies for Diagnostic and Therapeutic Utilization

This technology includes antibodies against TL 1A for the inhibition of TL 1A-DR3 interactions for the diagnosis and treatment of various autoimmune diseases. Through the use of our developed hamster anti-mouse and mouse anti-human monoclonal antibodies, we’ve demonstrated that treatment with anti-mouse TL 1A prevented collagen-induced arthritis and TNBS-induced colitis NEED TO UPDATE

A Mouse Cell Line Engineered to Produce Camelid Nanobodies for Diagnostic and Therapeutic Use

This technology includes the development of a mouse line capable of producing single-chain antibodies (nanobodies). Nanobodies, identified initially from Camelidae (including llamas and camels) but also found in cartilaginous fish, consist of a single variable heavy chain domain (VHH) that binds to specific epitopes. Nanobodies have equivalent binding specificity to antigens as antibodies but are more heat- and detergent-stable.

Intranasal or Inhaled Delivery of a Custom IgA Antibody for Protection Against COVID-19

This technology includes an IgA antibody, specifically designed to target the receptor binding domain of SARS-CoV-2, the virus causing COVID-19. Administered intranasally, this antibody has potential neutralizing activity, aiming to prevent COVID-19. IgA, an antibody class present in mucosal areas, plays a crucial role in immune defense at the initial site of viral infection. The primary application of this technology is envisioned as a therapeutic nasal spray, intended to prevent SARS-CoV-2 infection, particularly in high-risk populations.