Development of monoclonal antibodies that detect specific forms of neurophysin bound to either vasopressin or oxytocin

This invention includes the generation and use of monoclonal antibodies that specifically recognize either arginine vasopressin (AVP) or oxytocin (OT) when bound to neurophysins. The neurophysins (NPs) are a family of proteins that bind to hormones as they are released from the hypothalamus and make their way to the pituitary gland. Monoclonal antibodies were generated that specifically recognize vasopressin bound to a neurophysin (NP-AVP) or oxytocin bound to a neurophysin (NP-OT). Seven monoclonal antibodies were characterized.

Development of a polyclonal antibody that detects phosphorylated glutamate receptor 1 protein (GluA1 pS567)

This invention includes the generation and use of polyclonal antibodies that specifically recognize the glutamate receptor 1 protein that has been phosphorylated at Serine 567 (GluA1 pS567). Glutamate receptors are ligand-gated ion channels and are the predominant excitatory neurotransmitter receptor type in humans. A peptide sequence on the gene was selected surrounding the phosphorylation site. This peptide was then generated and injected into rabbits to create an immune response. Serum was then collected from the rabbit and the antibodies were affinity purified.

Development of a Rabbit Polyclonal Antibody for the pT707 Phosphorylated Site of Neuroligin-4 (NLHN4)

This technology includes the creation and use of a polyclonal antibody for Neuroligin-4, NLGN4, that was created by injecting a peptide surrounding the pT707 phosphorylation site into rabbits and affinity purifying the resulting serum. Neuroligin-4 is a member of the neuroligin family of cell adhesion proteins. This family has been shown to play a role in the maturation and function of the neuronal synapse and has been implicated in patients with autism and intellectual disability.

Treatment of Immune-mediated Brain Swelling with Combined Anti-LFA1/VLA4 Therapy

This technology includes a therapeutic approach to prevent secondary edema after cerebrovascular hemorrhage. Using an animal model, we found that edema is triggered by massive extravasation of myelomonocytic cells from the blood into the brain in response to hemorrhaging vessels. Administration of anti-LFA1 and anti-VLA4 antibodies resulted in an inhibition of extravasation of the myelomonocytic cells. This single dose treatment prevented secondary edema and markedly improved functional outcomes if administered within the first six hours following cerebrovascular hemorrhage.

Nanobody Therapeutics for SARS-CoV2

This technology includes the design and use of several nanobodies that bind to the SARS-CoV2 spike protein receptor binding domain and block spike protein interaction with the angiotensin converting enzyme 2 (ACE2) receptor. Nanobodies are 12-15 kDa single-domain antibody fragments that are more stable and easier to produce in large quantities compared to conventional antibodies. SARS-CoV2 is the virus responsible for the COVID19 pandemic. The SARS-CoV2 spike protein is responsible for viral entry into human cells via interaction with ACE2 on the cell surface.

Monoclonal Antibody that Detects a Subclass of Dog IgG—for Diagnostic and Research Applications

CDC and collaborating researchers have developed a new monoclonal antibody that recognizes canine IgG (likely IgG4 subclass). This anti-dog IgG reagent could be used to detect antibody reactions to a variety of antigens and has potential use in a wide variety of diagnostic or research applications.

Replicating RNA Vaccine For Crimean-Congo Hemorrhagic Fever Virus

Crimean-Congo hemorrhagic fever (CCHF) is a deadly hemorrhagic fever having a high mortality rate. The disease results from infection of an individual by Crimean-Congo hemorrhagic fever virus (CCHFV), which is a tick-borne bunyavirus endemic in Southern and Eastern Europe, Africa, the Middle East, and Asia. Geographically, case distribution is consistent with the range of Hyalomma genus ticks, the main reservoir of CCHFV, and is likely to expand due to climate change. Humans may be infected from tick bites, through contact with infected animals or animal tissue.

Engineered Cell-Penetrating Monoclonal Antibody for Universal Influenza Immunotherapy

Influenza remains a burden on public health, as current treatments of viral infections remain ineffective due to frequent virus mutations. Many current influenza treatments rely on targeting surface viral glycoproteins. Unfortunately, these glycoproteins are primary targets of the immune system, which results in increased selection pressure and mutational rate, leading to the well-known seasonal variation of influenza virus.