Compositions and Methods for Inhibiting Vascular Channels and Methods of Inhibiting Proliferation

Angiogenesis, the recruitment of new blood vessels, is recognized as an important factor in tumor proliferation in many types of cancer. It is generally accepted that therapeutic approaches that inhibit angiogenesis effectively limit, or even prevent, the formation of solid tumors. It has also been shown that anti-angiogenic therapeutics allow conventional radiation therapy and chemotherapy to be more effective.

This invention pertains to certain compounds that inhibit angiogenesis in a previously unrecognized way.

Detection of Mutational Frequency in Human Bone Marrow

To date there have been no adequate methods to determine the frequency of mutations in humans. This invention discloses a method of measuring the mutational frequency of a mitochondrial DNA sequence by sequencing mitochondrial DNA from clonally expanded single cells such as CD34+ human stem cells. Sequencing for mitochondrial DNA polymorphisms and mutations may also be useful as a general method to detect minimal residual disease in leukemia. The mitochondrial genome is particularly susceptible to mutations and these may be used to measure genomic mutagenesis by virtue of comparison.

Oral Treatment of Hemophilia

This invention portrays a simple method for treatment of antigen-deficiency diseases by orally administering to a subject a therapeutically effective amount of the deficient antigen, wherein the antigen is not present in a liposome. This method increases hemostasis in a subject having hemophilia A or B, by orally administering to the hemophiliac a therapeutically effective amount of the appropriate clotting factor, sufficient to induce oral tolerance and supply exogenous clotting factor to the subject.

Mouse Lacking the Chemokine Receptor CX3CR1

This mouse has been generated by targeted gene disruption. The mouse provides a model to investigate the function of the chemokine receptor CX3CR1, which is a proinflammatory receptor for the leukocyte chemoattractant CX3CL1 (aka fractalkine). As an example, the mouse is in use in the study of atherosclerosis. Further, the mouse may serve as a model study the role of the immune system during infection with pathogens as well as other immunologically mediated diseases and responses to tumors.

Brother of the Regulator of Imprinted Sites (BORIS)

The subject application discloses an isolated or purified nucleic acid molecule consisting essentially of a nucleotide sequence encoding a human or a non-human BORIS, or a fragment of either of the foregoing; an isolated or purified nucleic acid molecule consisting essentially of a nucleotide sequence that is complementary to a nucleotide sequence encoding a human or a non-human BORIS, or a fragment of either of the following; a vector comprising such an isolated or purified polypeptide molecule consisting essentially of an amino acid sequence encoding a human or a non-human BORIS, or a fragme

Activation of Recombinant Diphtheria Toxin Fusion Proteins by Specific Proteases Highly Expressed on the Surface of Tumor Cells

This invention relates to diphtheria toxin fusion proteins comprising a diphtheria toxin (DT) cell-killing component and a cell-binding component such as granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 2 (IL-2), or epidermal growth factor (EGF). Receptors for the latter three materials are present on many types of cancer cells; therefore, these fusion proteins bind preferentially to these cancer cells. A key feature is that these toxins are altered so as to require activation by a cell-surface protease that is overexpressed on many types of cancers.

Laminin A Peptides

This invention relates to peptides and derivatives thereof having laminin-like activity, as well as a pharmaceutical composition of the peptide. The peptides claimed include Serine-Isoleucine-Lysine-Valine-Alanine-Valine (SIKVAV). Methods for promoting increased adhesion and migration of epithelial cells is also disclosed. The peptides have wide usage in research, nerve regeneration and cancer treatment. For example, this invention may be useful as an adhesion and regeneration agent for nerve guides and as an adhesion agent for vascular prosthesis.

Multimeric Protein Toxins to Target Cells Having Multiple Identifying Characteristics

This technology relates to multimeric bacterial protein toxins which can be used to specifically target cells. Specifically, this is a modified recombinant anthrax toxin protective antigen (PrAg) that has been modified in several ways. First, the PrAg can be activated both by a metalloproteinase (MMP) and by urokinase plasminogen activator (uPA). Second, the native PrAg lethal factor (LF) binding site has been modified so that only a modified PrAg comprising two different monomers can bind anthrax LF.

Small Molecule Inhibitors of Clk and Dyrk Kinases for Potential Therapeutic Intervention of Down Syndrome, Alzheimer's Disease and Cancer

This technology includes small molecule inhibitors of the cdc2-like kinase (Clk) and Dyrk kinase which can restore splicing outcomes within many dysregulated splicing events potentially reversing phenotypes associated with diseases associated with abnormal splicing. The Clks regulate the alternative splicing of microtubule-associated protein tau and are implicated in frontotemporal dementia and Parkinson's disease through the phosphorylation of splicing factors (SF).