Co-Transcriptional Assembly of Modified RNA Nanoparticles
The National Cancer Institute seeks parties interested in collaborative research to co-develop a method to generate RNA molecules suitable for nanoparticle and biomedical applications.
The National Cancer Institute seeks parties interested in collaborative research to co-develop a method to generate RNA molecules suitable for nanoparticle and biomedical applications.
RNA interference (RNAi) is a naturally occurring cellular post-transcriptional gene regulation process that utilizes small double-stranded RNAs to trigger and guide gene silencing. By introducing synthetic RNA duplexes called small-interfering RNAs (siRNAs), we can harness the RNAi machinery for therapeutic gene control and the treatment of various diseases.
The development of RNA-based nanostructures and their use in a variety of applications, including RNA interference (RNAi) and drug delivery, represents an emerging field of science, technology, and biomedicine. RNA is a dynamic material because of its natural functionalities, its ability to fold into complex small structures, and its capacity to self-assemble.
RNA interference (RNAi) is a biological response to double-stranded RNA that regulates expression of protein-coding genes and is a natural mechanism for gene silencing. Delivery of short, interfering RNA (siRNA) leads to RNAi of the targeted genes.
The promise of RNA interference based therapeutics is made evident by the recent surge of biotechnological drug companies that pursue such therapies and their progression into human clinical trials. The present invention discloses novel RNA and RNA/DNA nanoparticles including multiple siRNAs, RNA aptamers, fluorescent dyes, and proteins. These RNA nanoparticles are useful for various nanotechnological applications.
RNA nanoparticles have the potential to serve as excellent drug or imaging delivery systems due to their designability and versatility. Furthermore, the RNA nanoparticles of the invention are also capable of self-assembly and potentially form nanotubes of various shapes which offer potentially broad uses in medical implants, gene therapy, nanocircuits, scaffolds and medical testing.
RNA interference (RNAi) is a naturally occurring post-transcriptional gene regulation process that represses the expression of specific genes. Exploiting endogenous RNAi by externally-delivered small-interfering RNA (siRNA) is a promising therapeutic for the treatment of various diseases representing several major unmet medical needs.
Current treatments for cancer and viral infection are limited remedies that often suppress cell or viral replication rather than eliminate diseased cells entirely from the body. A further limitation is that these therapies often compromise healthy cells as well, leaving problems of recurrence and side effects.
Researchers at developed a novel therapeutic nanoparticle (NP) system harboring therapeutic small siRNA that can significantly enhance effectiveness and specificity of treatments by killing diseased cells.
This technology provides improved processes for production and purification of nucleic acid-containing compositions, such as non-naturally occurring viruses, for example, recombinant polioviruses that can be employed as oncolytic agents. Some of the improved processes relate to improved processes for producing viral DNA template.
Nanoparticles such as lipid-based nanoparticles (LNPs) represent a relatively new era of targeted drug delivery systems wherein these biocompatible particles can carry the drug(s) of interest to a specific tumor site. The new generation of nanoparticles, known as stealth nanoparticles, are engineered to have a coating of polyethylene glycol polymer (PEG) or other glycolipids that enable them to evade the immune system and have a longer circulation lifespan as well as improved bioavailability to diseased tissue and reduced non-specific toxicity.