Transgenic Mouse Model of Human Basal Triple Negative Breast Cancer

The NCI Laboratory of Cancer Biology and Genetics seeks parties interested in collaborative research to further develop this mouse model of triple-negative breast cancer (TNBC) to study cancer biology and for preclinical testing.  As a Research Tool, patent protection is not being pursued for this technology; more information to access this strain can be found here: https://www.jax.org/strain/030386.

Biomarker signature development: microRNAs for biodosimetry

Alterations in microRNAs (miRNAs), a type of small non-coding RNAs, have been reported in cells/tumors subjected to radiation exposure, implying that miRNAs play an important role in cellular stress response to radiation. NCI researchers evaluated small non-coding RNAs, long non-coding RNAs (lncRNA), and mRNA, as potential non-invasive biomarkers for radiation biodosimetry. While the use of miRNAs as radiation biomarkers has been reported, the integrated use of miRNAs, mRNAs and lncRNAs to accurately determine radiation doses is novel and has not been published.

Automated Cancer Diagnostic Tool of Detecting, Quantifying and Mapping Mitotically-Active Proliferative Cells in Tumor Tissue Histopathology Whole-Slide Images

Cancer diagnosis is based on the assessment of patient biopsies to determine the tumor type, grade, and stage of malignancy. The proliferative potential of tumors correlates to their growth and metastasis. Visually identifying and quantifying mitotic figures (MF) in cancer biopsy tissue can be used as a surrogate for proliferative activity in tumors.

Zirconium-89 PET Imaging Agent for Cancer

Researchers at the NCI Radiation Oncology Branch  and NIH CIT Center for Molecular Modeling developed a tetrahydroxamate chelation technology that provides a more-stable Zr-89 complex as an immuno-PET cancer imaging agent. In either the linear or the macrocyclic form, the tetrahydroxamate complexes exhibit greater stability as chelating agents compared to Zr-89 complexed to the siderophore desferrioxamine B (DFB), a trihydroxamate, which represent

Mouse Model for the Preclinical Study of Metastatic Disease

The successful development of new cancer therapeutics requires reliable preclinical data that are obtained from mouse models for cancer. Human tumor xenografts, which require transplantation of human tumor cells into an immune compromised mouse, represent the current standard mouse model for cancer. Since the immune system plays an important role in tumor growth, progression and metastasis, the current standard mouse model is not ideal for accurate prediction of therapeutic effectiveness in patients.

SMAD3 Reporter Mouse for Assessing TGF-ß/Activin Pathway Activation

The Transforming Growth Factor Beta (TGF-ß) ligands (i.e., TGF-ß1, -ß2, -ß3) are key regulatory proteins in animal physiology. Disruption of normal TGF-ß signaling is associated with many diseases from cancer to fibrosis. In mice and humans, TGF-ß activates TGF-ß receptors (e.g., TGFBR1), which activates SMAD proteins that alter gene expression and contribute to tumorigenesis.  Reliable animal models are essential for the study of TGF-ß signaling.

Mitotic Figures Electronic Counting Application for Surgical Pathology

Cancer diagnosis depends on the assessment of patient biopsies to determine tumor type, grading, and stage of malignancy. Pathologists visually review specimens and count mitotic figures (MF) in a variety of cancer types to help gauge aggressiveness, guide treatment, and inform patient prognosis. Current technology for recording MF counts in surgical pathology is lacking in objectivity, and enumeration of MF by microscopy can be error prone. In particular, a lack of systematic means for recording contributes to recognized variability.