Immunotherapy Combination Treatment Containing both TLR4 and TLR2/6 Agonists, a Checkpoint Inhibitor, and a STING agonist.

Melanoma is an aggressive form of skin cancer that commonly becomes metastatic, spreading to nearby tissue or other parts of the body, including distant skin or subcutaneous sites such as the lungs, liver, brain, or bone. Metastatic melanoma is very drug resistant and difficult to treat, and therefore, the prognosis for these patients is poor. There is a need for effective therapies for aggressive melanoma and other drug-resistant solid cancers. 

Mice, Organs, and Mouse Alleles Carrying Germline and Conditional Deletions of the Zbtb7b Gene

The Zbtb7b gene encodes the zinc finger transcription factor ThPOK (also known as cKrox) that promotes CD4 lineage differentiation in immature T cells. CD4+ T cells, also known as “helper” T cells, are critical for long-term immunity against pathogens as well as for promoting CD8+ “effector” T cell and effective B cell responses. ThPOK is needed for the development and functional fitness of CD4+ T cells as well as multiple aspects of the immune response to infection. As such, ThPOK offers a potential target for immune regulation.

T Cell Receptors Targeting CDKN2A Mutations for Cancer Immunotherapy

Cyclin-dependent kinase inhibitor 2A gene, also known as CDKN2A, is a tumor suppressor gene and is commonly inactivated through somatic mutations in many human cancers. For example, inactivation of CDKN2A is highly prevalent in melanoma, gastrointestinal and pancreatic cancers. Through germline mutations, CDKN2A is associated with predisposition for a variety of cancers, including melanoma and pancreatic cancers. Despite the high frequency of CDKN2A mutations in cancer, there have been no successful therapies targeting these mutations to date.

Novel Small Molecule Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 (TDP1) for Treatment of Solid Tumors

Topoisomerase 1 (TOP1) is an essential enzyme that plays a critical role in DNA transcription and replication. TOP1 inhibitors are a known class of anti-cancer agents that work to interrupt DNA replication in cancer cells, causing cell death. Since the discovery of the TOP1 inhibitor camptothecin (CPT) from plant extracts more than 60 years ago, two CPT analogs (irinotecan and topotecan) were approved by the FDA for cancer treatment. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme involved in DNA repair created when TOP1 is inhibited.

Cell Lines that Constitutively Express High-Frequency KRAS and P53 Mutations and Human Leukocyte Antigens (HLAs)

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes tumor infiltrating lymphocytes (TILs) or genetically engineered T cells to attack tumor cells through recognition of tumor-specific antigens. A major hurdle in the development of ACT is the identification and isolation of T cells that recognize antigens that are expressed by tumor cells but not by healthy tissues. Current methods to identify such T cells involve extracting autologous antigen presenting cells (APCs) from patients in an expensive, laborious, and time-consuming process.

T Cell Receptors Targeting BRAF V600E Mutation for Cancer Immunotherapy

BRAF is an oncogene that encodinges a serine-threonine kinase (B-Raf kinase) important in regulating cell growth and differentiation. Spontaneous mutations in the BRAF gene allow cells to continuously divide, leading to the development of cancer. A substitution of glutamic acid for valine at amino acid number 600 (designated V600E) accounts for 90% of BRAF mutations and is a driver of many cancers. The V600E mutation is present in ~3% of all cancer cases, representing a patient population of 540,000 patients per year.

Automatic System and Method for Tissue Sectioning, Staining, and Scanning

Computer and imaging technologies led to the development of digital pathology and the capture and storage of pathological specimens as digitally formatted images. The use of artificial intelligence (AI) in digital pathology, such as in three-dimensional (3D) reconstruction, requires analyses of high volumes of data. This results in increased demands for processing and acquisition of digital images of pathology samples. Increased usage cannot be met by the time-consuming, manual, and laborious methods currently used.

Neoantigen T Cell Therapy with Neoantigen Vaccination as a Combination Immunotherapy Against Cancer

Adoptive cell therapy (ACT) is a breakthrough form of cancer immunotherapy that utilizes autologous, antitumor T cells to attack tumors through recognition of tumor-specific mutations, or neoantigens. A major hurdle in the development of ACT is the exhausted phenotype exhibited by many neoantigen-specific T cells, which limits their efficacy and prevents a sustained immune response. 

Bacteriophage Based-Vaccine System

Vaccines have become one of the most important tools in the fight against cancers and infectious diseases. However, some vaccines have shown limitations due to their high cost and low immune responses. To overcome these limitations, bacteriophages were proposed for the development of more cost-effective, immunogenic vaccines. Phages have shown a strong ability to activate induced and adaptive immune systems. The genome of these viral particles can be engineered, and their surface proteins can be exploited for antigen display.