3-o-sulfo-galactosylceramide Analogs as Activators of Type II Natural Killer T (NKT) Cells to Reduce Cancer Metastasis to the Lung

Lung metastases are a sign of widespread cancer with poor survival rate. Lung malignancies can originate from almost any cancer type spread via the blood stream. Most common lung metastases are from melanoma, breast cancer, bladder cancer, colon cancer, prostate cancer, neuroblastoma, and sarcoma. Living more than 5 years with lung metastases is uncommon, and surgical procedures are only effective with localized lung metastases. Lung metastasis are extremely frequent and resistant to regular treatment due to immunosuppressive regulatory sulfatide-reactive type II NKT cells.

High Efficacy Vaccine and Microbicide Combination For Use Against HIV

Human immunodeficiency virus (HIV) remains a major global health challenge despite the advancement made in development of effective antiretrovirals (ARVs). ARVs are effective at limiting replication and spread of the virus, and progression to acquired immuno-deficiency syndrome (AIDS). However, ARVs often lead to emergence of drug-resistant virus strains insensitive to treatment and with toxic effects following long-term usage.

PET Imaging of lntegrin Expression with Suitably Labeled RGD Peptides for Multiple Diagnostic Purposes

This technology includes a number of dimeric RGD peptides which been developed and labeled with various PET isotopes (1BF, 68Ga, and 64Cu) for imaging integrin expression in cancer, inflammation, rheumatoid arthritis, myocardial infarct, stroke and traumatic injury. A number of these peptides have been translated into clinic for diagnosis and therapy response monitoring.

Selective A3 Adenosine Receptor Agonists for the Treatment of Chronic Neuropathic Pain and Other Conditions

This technology includes the creation and use of A3 adenosine receptor (A3AR)-selective agonists for treating chemotherapy-induced peripheral neuropathy, chronic neuropathic pain, rheumatoid arthritis, psoriasis, and other conditions. A3 receptors for adenosine are found in most cells and endogenous activation of the A3 receptors can result in apoptosis, thereby relieving the inflammation or targeting a tumor. A3AR agonists have been a promising strategy for the treatment of various diseases.

Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  Given that Bregs are a very rare B-cell, identifying factors that promote their development would allow in vivo modulation of Breg levels and ex-vivo production of large amounts of antigen-specific Bregs to use in immunotherapy for auto-inflammatory diseases.
 

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin’s lymphoma and consists of three subtypes: activated B-cell (ABC), germinal center B-cell (GBC), and primary mediastinal B-cell (PMB). Despite advances in the front-line therapy for DLBCL, approximately one-third of patients will relapse. Substantially worse outcomes have been reported for patients diagnosed with ABC DLBCL and treated with standard chemoimmunotherapy, suggesting the need for novel strategies that improve treatment outcomes.

Optimized Monospecific or Bicistronic Chimeric Antigen Receptor (CAR) Constructs Targeting CD19 and CD20

Patients with chemotherapy-refractory, diffuse large B-cell lymphoma (DLBCL) have poor prognoses. CD19 and CD20 are promising targets for the treatment of B-Cell malignancies. However, despite the initial promising results from anti-CD19 CAR therapy, only 30-35% of patients with DLBCL achieve remissions lasting longer than 2-3 years after anti-CD19 CAR T-cell therapy. Relapse and non-response are likely due to diminished CD19 expression after anti-CD19 therapy and low expression of CD19 in some lymphomas. 

Exo-Clean Technology for Purifying Extracellular Vesicle Preparations from Contaminants

Extracellular Vesicles (EVs), including exosomes and microvesicles, are nanometer-sized membranous vesicles that can carry different types of cargos, such as proteins, nucleic acids and metabolites. EVs are produced and released by most cell types. They act as biological mediators for intercellular communication via delivery of their cargos. This unique ability spurred translational research interest for targeted delivery of therapeutic molecules to treat a wide range of diseases. EVs also contain interesting information of their specific cellular origin.

Adjuvanted Mucosal Subunit Vaccines for Preventing SARS-CoV-2 Transmission and Infection

The Corona virus disease, 2019 (COVID-19) pandemic is a worldwide public health crisis with over 153 million confirmed cases and 3.2 million deaths as of April 2021. COVID-19 is caused by a novel coronavirus called SARS-CoV-2. SARS-COV-2 infects hosts via its spike (S) protein, which has two portions, S1 that binds the cell and S2 that is involved in viral entry via fusion with the cell membrane. There are several vaccines available for COVID-19 patients that directly target SARS-CoV-2 by systemic immunization.