Ex-vivo Production of Regulatory B-Cells for Use in Auto-immune Diseases

Regulatory B-cells (Breg) play an important role in reducing autoimmunity and reduced levels of these cells are implicated in etiology of several auto-inflammatory diseases. Despite their impact in many diseases, their physiological inducers are unknown.  Given that Bregs are a very rare B-cell, identifying factors that promote their development would allow in vivo modulation of Breg levels and ex-vivo production of large amounts of antigen-specific Bregs to use in immunotherapy for auto-inflammatory diseases.
 

Species-Independent A3 Adenosine Receptor Agonists Which May Be Useful for Treating Ischemia, Controlling Inflammation, and Regulating Cell Proliferation

This invention claims species-independent agonists of A3AR, specifically (N)-methanocarba adenine nucleosides and pharmaceutical compositions comprising such nucleosides. The A3 adenosine receptor (A3AR) subtype has been linked with helping protect the heart from ischemia, controlling inflammation, and regulating cell proliferation. Agonists of the human A3AR subtype have been developed that are also selective for the mouse A3AR while retaining selectivity for the human receptor.

Triazole Derivatives of 4,7-disubstituted 2 naphthoic acid (PPTN) as P2Y14 Receptor Antagonists

The Molecular Recognition Section of NIDDK announces the availability of a novel triazole-based probes, structures which act as antagonists at human P2Y14 receptors. Although the physiologic functions of this receptor remain undefined, recently it has been strongly implicated in immune and inflammatory responses. Prior work with a 4,7-disubstituted 2 naphthoic acid derivative (PPTN) established the ability to inhibit chemotaxis of human neutrophils in the lung and kidney.

Truncated Methanocarba Adenosine Derivatives as A3 Adenosine Receptor Antagonists

Novel A3 adenosine antagonists available for licensing. A3 receptors are particularly highly expressed in inflammatory cells, making it a potentially desirable target for inflammatory diseases. This technology relates to highly specific antagonists and partial agonists of A3 adenosine receptors, which are negatively coupled to adenylate cyclase and have been broadly implicated in inflammation, cardiovascular disease, endocrine conditions and cancer. Further, A3 adenosine receptors have been implicated in asthma and glaucoma.

Novel Methods for Reducing Inflammation and Treating Diseases such as Parkinson's and Alzheimer's Disease

Microglia activation leads to inflammation mediated dopaminergic degeneration in the brain of patients with Parkinson and Alzheimer's Disease. Thus Identification of drugs that reduce microglia activation could prevent or reverse neuronal degeneration in these diseases and other degenerative CNS disorders.

Methods for the Selection of Subjects for Multiple Sclerosis Therapy

Multiple Sclerosis (MS) is a life-long chronic autoimmune disease diagnosed primarily in young adults who have a virtually normal life expectancy. Estimates place the annual costs of MS in the United States in excess of $2.5 billion. There are approximately 250,000 to 400,000 persons in the United States with MS, and approximately 2.5 million persons worldwide suffer from MS. A variety of therapies are used to treat MS, but there is no single therapy that can be used to treat all patients.

Receptor-Mediated Uptake of an Extracellular Bcl-X<sub>L</sub> Fusion Protein Inhibits Apoptosis

The present invention relates to the field of apoptosis, in particular, it relates to apoptosis-modifying fusion proteins with at least two domains, one of which targets the fusion proteins to a target cell, and another of which modifies an apoptotic response of the target cell. For example, fusing various cell-binding domains to Bcl-XL and Bad allows targeting to specific subsets of cells in vivo, permitting treatment and/or prevention of cell-death related consequences of various diseases and injuries.

The Use of an Inducible Plasmid Vector Encoding for Active TGF-beta for the Treatment of Autoimmune Diseases

This application describes a composition and method for treating inflammatory bowel disease or other autoimmune diseases. The composition utilizes a vector which contains a first promoter which controls the expression of a regulatory transcription factor and a second inducible promoter which controls the expression of the gene of interest. The preferred gene of interest encodes an isoform of TGF-beta such as TGF-beta1 or TGF-beta3. The isoform of TGF-beta does not have to be hTGF-beta and can be a latent or active isoform of TGF-beta.