Methods of Inducing Immune Tolerance Using Immunotoxins

The invention concerns immunotoxins and methods of using the immunotoxins for the treatment of rejection response in a patient, including graft-versus-host disease and transplantation of organs, tissues and cells into a host. In a specific embodiment of the invention, the transplant involves pancreatic islet cells. The immunotoxins are targeted via an antibody that is specific to T cells. This allows the specific ablation of resting T cells, resulting in an accentuation of immune tolerizing responses and an increased tolerance to transplants and grafts.

Methods for Expression and Purification of Immunotoxins

The invention concerns immunotoxins and methods of making the immunotoxins. Targeting of the immunotoxins occurs via an antibody that is specific to T cells. This allows the specific ablation of malignant T cells and resting T cells. The transient ablation of resting T cells can "reset" the immune system by accentuating tolerizing responses. As a result, the immunotoxin can be used to treat autoimmune disease, malignant T cell-related cancers, and graft-versus-host disease.

Collagen-Induced Platelet Aggregation Inhibitor from Mosquito Salivary Glands

Exposed collagen in injured blood vessels provides a substrate for platelets to adhere and aggregate initiating the first step in thrombosis, the formation of blood clots inside a blood vessel. Despite the essential role of platelets in vascular injury, excessive platelet aggregation may also result in thrombotic diseases such as stroke and heart attack.

Hybridoma C4H3, Monoclonal Antibody to a Specific Peptide-MHC Class II Complex

T lymphocytes play an important role in the immune system by recognizing foreign protein motifs on cells. T lymphocytes are stimulated to recognize these motifs through their interactions with peptide-MHC complexes (pMHC). Thus, studying pMHC is an important aspect of understanding how the immune system works, particularly with regard to the development of vaccines. Unfortunately, the detection of pMHC is largely dependent on indirect assays, due to the difficulty of producing antibodies for specific pMHC.

Novel Roles of a DNA Repair Protein, DNA-PKcs, in Obesity, Neurological Function, and Aging

The catalytic subunit of the DNA-dependent protein kinase complex (DNA-PKcs) has been shown to be important in DNA repair and VDJ recombination in lymphocytes. The inventors have discovered that DNA-PKcs also plays novel, important roles in energy regulation and neurological function. The inventors observed that mature DNA-PKcs-deficient mice (also known as SCID mice) have a lower proportion of fat, resist obesity, and have significantly greater physical endurance than wild-type control mice, particularly with increasing age.

A Fold-Back Diabody Format for Diphtheria Toxin-Based Immunotoxins That Can Increase Binding and Potency

NIH inventors, in collaboration with Scott and White Memorial Hospital inventors, have developed new immunotoxins comprising a mutant diphtheria toxin linked to an anti-prostate specific membrane antigen (PSMA) fold-back diabody. The fold-back diabody construct has a shortened linker region between the heavy and light chains of the antibody variable domain. This construct allows interactions between the longer-linked variable domains while preventing interactions between the shorter-linked variable domains.

Muramyl Dipeptide as a Therapeutic Agent for Inflammation

The nucleotide-binding oligomerization domain 2 (NOD2) protein plays a key role in innate immunity as a sensor of muramyl dipeptide (MDP), a breakdown product of bacterial peptidoglycan. Bacterial peptidoglycan promotes the innate immune response through the activation of Toll-like receptor 2 (TLR2), which ultimately provokes inflammation. Activation of NOD2 by MDP negatively regulates the activity of TLR2, and thus reduces inflammation.

Species-Independent A3 Adenosine Receptor Agonists Which May Be Useful for Treating Ischemia, Controlling Inflammation, and Regulating Cell Proliferation

This invention claims species-independent agonists of A3AR, specifically (N)-methanocarba adenine nucleosides and pharmaceutical compositions comprising such nucleosides. The A3 adenosine receptor (A3AR) subtype has been linked with helping protect the heart from ischemia, controlling inflammation, and regulating cell proliferation. Agonists of the human A3AR subtype have been developed that are also selective for the mouse A3AR while retaining selectivity for the human receptor.

Cell Based Immunotherapy

The invention hereby offered for licensing is in the field of Immunotherapy and more specifically in therapy of autoimmune diseases such as Type I diabetes, multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosis and immune mediated allergies such as asthma as well as in transplantation-related disorders, such as graft acceptance and graft-versus-host-disease (GVHD).

Truncated Methanocarba Adenosine Derivatives as A3 Adenosine Receptor Antagonists

Novel A3 adenosine antagonists available for licensing. A3 receptors are particularly highly expressed in inflammatory cells, making it a potentially desirable target for inflammatory diseases. This technology relates to highly specific antagonists and partial agonists of A3 adenosine receptors, which are negatively coupled to adenylate cyclase and have been broadly implicated in inflammation, cardiovascular disease, endocrine conditions and cancer. Further, A3 adenosine receptors have been implicated in asthma and glaucoma.