DLX3-floxed mice (DLX3f/f) for Use in Drug Development and In Vivo Research Studies for Ectodermal Dysplasia Disorders

This technology includes the creation of DLX3-floxed mice, specifically designed for conditional deletion of the DLX3 gene via Cre-mediated recombination. This innovative approach aims to develop mouse models for studying ectodermal dysplasia disorders. Ectodermal dysplasias are a diverse group of genetic conditions affecting the development of ectodermal structures, including hair, teeth, and bones. The DLX3f/f mice are particularly valuable for modeling specific disorders such as Tricho-dento-osseous syndrome (TDO), Amelogenesis Imperfecta (AI), and Dentinogenesis Imperfecta (DI).

Identification of a Novel Parvovirus for Vaccine Development and Use as a Diagnostic Tool

This technology includes a procedure for novel virus identification in a variety of human specimens by solexa high-throughput sequencing, which allows for the screening a large number of clinical specimens for novel virus discovery in a highly efficient and relatively economical method. By using this technique, we have successfully identified a novel parvovirus from samples of seronegative hepatitis patients.

A Most Efficient and Convergent Principal Component Analysis (PCA) Method for Big Data

Big data usually means big sample size with many outliers, in which traditional scalable L2-norm principal component analysis (L2-PCA) will fail. Current existing L1-norm PCA (L1-PCA) methods can improve robustness over outliers, however, its scalability is usually limited in either sample size or dimension size.  The inventor proposes an online flipping method to solve L1-PCA challenges, which is not only convergent asymptotically (or with big data), but also achieves most efficiency in the sense each sample is visited only once to extract one principal component (PC).

Engineered Human Induced Pluripotent Stell Cell (iPSC) Lines for Multiple Therapeutic and Diagnostic Uses

This technology includes ten engineered human induced pluripotent stem cell (iPSC) lines with reported genes inserted into safe harbor sites for use in therapy and diagnostic screening assay development as well as basic stem cell biology research. These cell lines have the potential to differentiate into all cells in the body, and theoretically can proliferate/self-renew indefinitely.

Generation of AAVS1 and C13 “Safe Harbor” Transcription Activator-life Effector Nucleases (TALENs) for Drug Screening or Gene Therapy Development

This technology includes AAVS1 and C13 “safe harbor” transcription activator-life effector nucleases (TALENs) for drug screening or gene therapy applications. TALENs are engineered sequence-specific DNA endonucleases that can significantly enhance genome-editing efficiency by >100-1000 folds. “Safe harbor” such as AAVS1 safe harbor and C13 safe harbor is genome locus that allows robust and persistent transgene expression with no or minimal interference of endogenous gene expression and cell properties.

Compositions and Methods for Reducing Serum Triglycerides

This technology includes a vaccine for lowering plasma triglycerides by inducing the formation of autoantibodies against either ANGPTL3 or ANGPTL4, which are inhibitors of Lipoprotein Lipase. This was done by conjugating synthetic peptides based on ANGPTL3 or ANGPTL4 to virus- like particles (VLPS). Injection of the vaccine in animal models was shown to induce the autoantibody against the target and to lower plasma triglycerides.

Methods to Produce Very Long Chain Fatty Acids (VLCFA) for Use as Nutritional Formulas and as Therapeutics for Disease

This technology includes a new method to prepare very long chain fatty acids (VLCFA), which does not use the previously reported toxic mercury amalgam, for use as nutritional supplements, and as therapeutics for various diseases. The key coupling step involves an organocopper mediated coupling of the Grignard regent derived from the bromo alkyl tetraene with a bromoalkyl containing a protected alcohol. After the coupling the alcohol Is deprotected and oxidized to prepare the very long fatty acid. The synthetic approach is flexible and can be used to prepare the other VLCFA compounds.

Anti-sense Therapy Against ApoC-III as a Treatment for High Cholesterol

This technology includes a new class of synthetic peptides that activate Lipoprotein Lipase (LPL), a key plasma enzyme that lowers triglycerides, by displacing apoC-111, a potent inhibitor of LPL. ApoC-11 is a known activator of LPL, whereas ApoC-111 inhibits LPL and raises triglycerides either directly by blocking lipolysis and or by preventing hepatic uptake of lipoproteins. Both apoC-II and apoC-III have to bind to the surface of a lipoprotein particle to mediate their effects.

Novel ApoC-11 Mimetic Peptides That Activate LPL for the Treatment of ApoC-11 Deficiency and Hypertriglyceridemia

This technology includes a new class of synthetic peptides that activate Lipoprotein Lipase (LPL), a key plasma enzyme that lowers triglycerides. Mutations in apoC-II is a genetic cause of severe hypertriglyceridemia, which can lead to cardiovascular disease and pancreatitis.