Technology ID
TAB-2238
Identification of EGFR as A Receptor for AAV6 Transduction
E-Numbers
E-194-2010-0
Lead Inventor
Chiorini, John (Jay) (NIDCR)
Co-Inventors
Schmidt, Michael (NIDCR)
Weller, Melodie (NIDCR)
Applications
Therapeutics
Development Status
Pre-clinical
Lead IC
NIDCR
ICs
NIDCR
AAV vectors offer unique advantages in gene therapy applications. Studies have shown that these replication deficient parvovirus vectors can deliver DNA to specific tissues and confer long-term transgene expression in a variety of systems. Although many studies have looked at the tissue-specific expression elicited by each of the AAV serotypes, a true understanding of how AAV transduces these tissues is still unclear. Of the large AAV family, only a few receptors or co-receptors have been identified. The ability to better target transduction to specific tissues on the basis of the receptors that each serotype uses for entry is essential for selecting a serotype given the receptor expression in specific tissue, or to exploit altered receptor expression under disease conditions.
AAV6 has been reported to effectively transduce muscle, lung, brain, and multiple types of tumors, including gliomas and lung adenocarcinomas. By using a bioinformatics based screen approach, the NIH investigators discovered that the epidermal growth factor receptor (EGFR) is a co-receptor for AAV6 infection in mammalian cells, and is necessary for efficient vector internalization.
AAV6 has been reported to effectively transduce muscle, lung, brain, and multiple types of tumors, including gliomas and lung adenocarcinomas. By using a bioinformatics based screen approach, the NIH investigators discovered that the epidermal growth factor receptor (EGFR) is a co-receptor for AAV6 infection in mammalian cells, and is necessary for efficient vector internalization.
Commercial Applications
Improved gene therapy applications
Licensing Contact: