Segmented Metallic MRI Guidewires Using Stiffness-matched Nonconductive Connectors for Catheterization Procedures

This technology includes a metallic guidewire that is suitable for MRI catheterization, because it is mechanically long but electrically consists of short conductive segments that cannot resonate during MRI. The invention consists of stiffness-matched non-conductive connectors or connections that are used along with short metallic segments. The embodiment reduced to practice has torquability and flexibility comparable to marketed metallic guidewires, yet is free from MRI heating.

Endo-cameral Closure Device for Structural Heart Defects and Blood Vessel Repair

This technology includes a device to close a hole in the wall of a large blood vessel or cardiac chamber from the inside out, delivered over a guidewire and through a catheter or sheath. First, the proximal portion deploys within the vessel or chamber and is advanced over a guidewire to oppose the wall and seal the hole. Second, the distal portion self-assembles outside the vessel or chamber upon withdrawal of the guidewire. Deployment of the distal portion anchors the device securely in place.

Instant Total Internal Reflection Fluorescence/Structured Illumination Microscopy (instant TIRF/SIM)

This technology includes a method which enables high-speed, super-resolution microscopy at a very high signal-to-noise ratio (SNR), for biological applications within ~200 nm (the evanescent wave decay length) of a coverslip surface. Instant TIRF/SIM may be implemented simply by modifying and adding to the excitation optics that are already present within a conventional instant SIM design. We enforce TIRF excitation by removing all wave vectors that propagate into the objective lens at sub-critical angles.

Evans Blue Modified Small Molecule-based Prostate-specific Membrane Antigen (PSMA) Radiotherapy and Nuclear Imaging

This technology includes anti-PSMA antibody labeled with 177Lu, which has shown to be an effective treatment for prostate cancer. Several small molecules targeting PSMA were also evaluated in prostate cancer patients labeled with betta emitters such as 177Lu. The most common one is 177Lu-PSMA-617 which is under clinical evaluation in many countries. Usual treatment in patients in most clinical trials was composed of up to 3 cycles of 177Lu-PSMA-617.

Intralipid as a Contrast Agent to Enhance Subsurface Blood Flow Imaging

This technology includes a blood flow imaging method that allows for a higher density of smaller particles to be detected. Current imaging methods that are based on Doppler measurements are limited by the discontinuity in the capillary flow in the space between red blood cells. The core technology is to use a scattering agent to enhance capillary flow or microcirculation. This technology has been tested for optical coherence Doppler tomography, but can be expended to any Doppler based flow imaging techniques such as laser speckle imaging.

Three-dimensional Fluorescence Polarization Excitation via Multiview Imaging

This technology includes a method that extends fluorescence polarization imaging so that the dipole moment of a fluorescent dye may be excited regardless of its 3D orientation. By exciting the dipole from multiple directions, we ensure that excitation may occur even if the dipole is unfavorably oriented along the axial (propagation) axis. If the dye can be rigidly attached to the structure of interest, our method also enables the 3D orientation of the structure to be estimated accurately.

Producing Isotropic Super-Resolution Images from Line Scanning Confocal Microscopy

This technology includes a microscopy technique that produces super-resolution images from diffraction-limited images obtained from a line scanning confocal microscope. First, the operation of the confocal microscope is modified so that images with sparse line excitation are recorded. Second, these images are processed to increase resolution in one dimension. Third, by taking a series of such super-resolved images from a given sample type, a neural network may be trained to produce images with 1D super-resolution from new diffraction-limited images.

P2Y14 Receptor Antagonists for the Treatment of Inflammatory Diseases, Including Pulmonary and Renal Conditions and Chronic Pain

This technology includes the development of selective P2Y14R antagonists for the treatment of asthma, sterile inflammation of the kidney, diabetes, and neurodegeneration. The P2Y14 receptor (P2Y14R) is a target for the treatment of inflammatory diseases, including pulmonary and renal conditions. Selective P2Y14R antagonists have demonstrated efficacy in animal models of asthma, pain, diabetes, and acute kidney injury. However, the prototypical antagonist is not optimal for in vivo administration, as it displays a low oral bioavailability.