Methods for Selection of Cancer Patients and Predicting Efficacy of Combination Therapy

Available for licensing from the Laboratory of Cancer Biology and Genetics of the National Cancer Institute (NCI) is a novel gene signature of thirty-seven drug-responsive genes that links changes in gene expression to the clinically desirable outcome of improved overall survival. Expression of these genes has been linked to prognosis in several cancers, including, but not limited to: multiple myeloma, melanoma, and lung and breast cancers.

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

T cells currently employed for T cell-based immunotherapies are often senescent, terminally differentiated cells with poor proliferative and survival capacity. Recently, however, scientists at the National Cancer Institute (NCI) identified and characterized a new human memory T cell population with stem cell-like properties. Since these T cells have limited quantities in vivo, the scientists have developed methods by which high numbers of these cells can be generated ex vivo for use in T cell-based immunotherapies.

Peptide Hydrogels for Rate-Controlled Delivery of Therapeutics

Hydrogels represent an attractive controlled drug-delivery system that have been used in various clinical applications, such as: tissue engineering for wound healing, surgical procedures, pain management, cardiology, and oncology. High-water content of hydrogels confers tissue-like physical properties and the crosslinked fibrillar network enables encapsulation of labile small molecule drugs, peptides, proteins, nucleic acids, proteins, nanoparticles, or cells.

Convolutional Neural Networks for Organ Segmentation

Accurate automated organ and disease feature segmentation is a challenge for medical imaging analysis. The pancreas, for example, is a small, soft, organ with low uniformity of shape and volume between patients. Because of the lack of uniform image patterns, there are few features that can be used to aid in automated identification of anatomy and boundaries. Segmentation of high variability features is uniquely difficult for a computer to perform.

A Viral Exposure Signature to Define and Detect Early Onset Hepatocellular Carcinoma

Early detection of liver cancer, such as hepatocellular carcinoma (HCC), is key to improve cancer-related mortality. More than 800,000 people are diagnosed with this cancer each year throughout the world. Liver cancer is also a leading cause of cancer deaths worldwide, accounting for more than 700,000 deaths each year. Currently, millions of Americans and possibly billions in the world are considered at risk for developing liver cancer.

T cell Receptors Which Recognize Mutated EGFR

Epidermal growth factor receptor (EGFR) is a transmembrane protein involved in cell growth and proliferation. Mutations in this protein can lead to overexpression, causing several types of cancer; notably, non-small cell lung cancer (NSCLC). For example, mutations in EGFR are found in up to 50% of NSCLC patients and the E746-A750 deletion accounts for 30-40% of such EGFR mutations. Currently, there are no available therapeutics that specifically target the E746-A750 deletion. 

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. TCRs consist of two domains, one variable domain that recognizes the antigen and one constant region that helps the TCR anchor to the membrane and transmit recognition signals by interacting with other proteins. When a TCR is stimulated by an antigen, such as a tumor antigen, some signaling pathways activated in the cell lead to the production of cytokines, which mediate the immune response.