Chimeric Antigen Receptors to CD22 for Treating Hematological Cancers

Chimeric antigen receptors (CARs) are hybrid proteins consisting of an antibody binding fragment fused to protein signaling domains that cause T-cells which express the CAR to become cytotoxic.  Once activated, these cytotoxic T-cells can selectively eliminate the cells which they recognize via the antibody binding fragment of the CAR.  Thus, by engineering a T-cell to express a CAR that is specific for a certain cell surface protein, it is possible to selectively target those cells for destruction.  This promising new therapeutic approach is known as adoptive cell therapy.

3D Image Rendering Software for Biological Tissues

Available for commercial development is software that provides automatic visualization of features inside biological image volumes in 3D. The software provides a simple and interactive visualization for the exploration of biological datasets through dataset-specific transfer functions and direct volume rendering. The method employs a K-Means++ clustering algorithm to classify a two-dimensional histogram created from the input volume. The classification process utilizes spatial and data properties from the volume.

Inhibition of T Cell Differentiation and Senescence by Overexpression of Transcription Factor c-Myb

Adoptive Cell Therapy (ACT) is a promising technique that uses a patient's own T cells to treat cancer. The process requires removing and engineering a patient's T cells to express a chimeric antigen receptor (CAR) or T cell receptor (TCR) that targets a specific cancer antigen. When the modified T cells are reintroduced into the patient, the T cells attack and kill cancer cells that express the antigen, thereby treating the patient.

AngleNav: Micro-Electro-Mechanical Systems (MEMs) Trackers to Facilitate Computed Topography (CT)-Guided Needle Puncture

Conventional free-hand needle puncture procedures for biopsy and other procedures, often rely on unguided manual movements to guide a needle to its destination. Freehand procedures risk missing the tumor, or accidental injury, such as puncturing a vital organ. Needle guidance systems may improve accuracy and reduce risks but available guidance technologies are cumbersome and expensive and may carry other risks.

Novel Fixative for Improved Biomolecule Quality from Paraffin-Embedded Tissue

Tissues samples collected during medical procedures, such as biopsies, are used to diagnose a wide variety of diseases. Before diagnosis, patient samples are typically processed by fixation and paraffin embedding. This fixation/embedding process is used to preserve tissue morphology and histology for subsequent evaluation. Unfortunately, most fixative agents can damage or destroy nucleic acids (RNA and DNA) and damage proteins during the fixation process, thereby potentially impairing diagnostic assessment of tissue.

In vitro Generation of an Autologous Thymic Organoid from Human Pluripotent Stem Cells

The thymus is an integral part of the adaptive immune system as it generates T cells. Its function diminishes rapidly as the body ages, leading to a compromise of the immune system in the elderly. Reconstitution of adaptive immunity through mass production of different T cell types is therefore a therapeutic need in immunocompromised populations. Furthermore, production of T cells with specific receptors targeting cancer cells is an important cancer immunotherapy approach.

A peptide hydrogel for use in vascular anastomosis

In collaboration with surgery specialists from Johns Hopkins University, researchers at the National Cancer Institute (NCI) developed novel hydrogel compositions and methods of using them in the microsurgical suturing of blood vessels, which is particularly beneficial for surgeons in whole tissue transplant procedures. The lead candidate electropositive hydrogels, called APC1, was demonstrated in anastomosis mice models to be well tolerated, biocompatible, and non-toxic.

Anti-bacterial Treatments Using Peptide-Based Inhibitors of the STAT3-IL10 Pathway

Tuberculosis (TB) is an infectious disease that typically affects the lungs. Current therapies include a panel of antibiotics given over a range of 6-9 months. As a result of the expense of treatment, the extended timeframe needed for effective treatment, and the scarcity of medicines in some developing countries, patient compliance with TB treatment is very low and results in multi-drug resistant TB (MDR-TB). There remains a need for a faster, more effective treatment for TB.