CC Chemokine Receptor 5 DNA, New Animal Models and Therapeutic Agents for HIV Infection

Chemokine receptors are expressed by many cells, including lymphoid cells, and function to mediate cell trafficking and localization. CC chemokine receptor 5 (CCR5) is a seven-transmembrane, G protein-coupled receptor (GPCR) which regulates trafficking and effector functions of memory/effector T-lymphocytes, macrophages, and immature dendritic cells. Chemokine binding to CCR5 leads to cellular activation through pertussis toxin-sensitive heterotrimeric G proteins as well as G protein-independent signalling pathways.

HIV Monoclonal Antibodies

This technology describes several hybridomas that produce monoclonal antibodies (mAbs) useful in HIV research applications. The mAbs are specific for either gp41 or gp120. In particular, the hybridomas producing mAbs designated D19, D56, M12, T8 and T24 (all anti-gp120), and T32 and T33 (gp41 specific) were found to be of particular utility. Additional hybridomas expressing mAbs disclosed in the publications may also be available.

Use of Mono-Amine Oxidase Inhibitors to Prevent Herpes Virus Infections and Reactivation from Latency

Available for licensing are methods of using Monoamine Oxidase Inhibitors (MAOIs) to prevent alpha-herpesvirus lytic infections, such as those caused by Herpes simplex virus (HSV-1 or HSV-2) and Varicella zoster virus (VZV), and to possibly prevent the periodic reactivation of these viruses from latency. MAOIs have been historically used to treat depression, hypertension, and related diseases. The invention describes how MAOIs can also inhibit LSD1, a histone/protein demethylase that is required for initiation of alpha-herpesvirus lytic infection.

Method of Producing Immortalized Primary Human Keratinocytes for HPV Investigation, Testing of Therapeutics, and Skin Graft Generation

One of the major limitations of using cultured keratinocytes for research studies is that primary keratinocytes senesce after a few passages. Keratinocytes from specific anatomical sites are also difficult to culture. Scientists at the NIH have demonstrated that primary keratinocytes, from several anatomical sites, when treated with a small-molecule inhibitor of the ROCK protein maintain a proliferative state and become immortal without genetic modification to the cells.

Prevention and Treatment of Herpes Virus Infection by Inhibition of the JMJD2 Family of Histone Demethylases

Investigators at the NIH have discovered a potential means for preventing or treating a herpes virus infection by inhibiting the activity of the host cell’s histone demethylases. When herpesviruses enter a cell, they are inactivated by cellular defense mechanisms that wrap the viral genome in repressive chromatin structures. In order for viral replication to progress, the host’s own histone demethylases are recruited to the viral genome to reverse this repression.

FRugally Optimized DNA Octamer (FRODO): DNA Vector and Uses Thereof For Detecting HIV and SIV

Quantitative polymerase chain reactions (qPCRs) are commonly employed to enumerate genes of interest among particular biological samples. Insertion of PCR amplicons into plasmid DNA is a mainstay for creation of known quantities of target sequences to standardize quantitative PCRs. Typically, one amplicon is inserted into one plasmid construct, the plasmid is then amplified, purified, serially diluted, and then quantified to be used to enumerate target sequences in unknown samples.

Multi Protein Nanoparticle Monkeypox Vaccine

In 2022, the World Health Organization declared an atypical outbreak of monkeypox (Mpox), which has caused approximately 30,000 cases of Mpox infection within the United States as of April 2023. Mpox represents a current threat to public health, and there is an immediate need for an effective vaccine. To address this, NIAID has developed a vaccine approach comprising virus-like nanoparticles coated with modified Mpox proteins.

Anti-Puromycin Antibodies Illuminate the World of Cellular Protein Translation

The Ribopuromycylation (RPM) technology, developed by Dr. Jon Yewdell and Dr. Alexandre David, offers a powerful and universal method for visualizing and studying protein translation within cells. RPM involves the use of puromycin, a molecule that mimics a tyrosyl-tRNA and terminates translation by becoming covalently incorporated into the nascent protein chain's C-terminus within the ribosome's A site. This technique enables the immobilization of puromycylated nascent protein chains on ribosomes when chain elongation inhibitors like cycloheximide or emetine are utilized.

Hybridoma Cell Lines 2A4 And 5B12 Against Puromycin

Protein translation is a central cellular function attracting increasing attention from cell biologists as they integrate gene product specific information into a systems view of cellular function. Scientists at NIAID developed the puromycin-specific antibodies that allow for the specific detection of puromycin-containing nascent polypeptides via standard immunofluorescence or flow cytometry.