Novel Furoquinolinediones as Inhibitors of TDP2 and Their Potential Use to Treat Cancer

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is an enzyme that playings a critical role in repairing nucleic acid lesions, namely by repairing trapped DNA cleavage complexes. TDP2 repairs topoisomerase (TOP2)-mediated DNA damage induced by chemotherapeutic agents and removes endogenous TOP2-DNA cleavage complexes. Further, TDP2 deficiency potentiates the antiproliferative activity of TOP2 inhibitors. This suggest that combination therapies consisting of TDP2 and TOP2 inhibitors have a synergistic effect on tumor tissues.

Antagonists of Hyaluronan Signaling for Treatment of Airway Diseases

Airway diseases, such as Asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major health burden worldwide. It is estimated, for example, that nearly 15.0% of the adult population in the US are affected with such diseases, and the economic cost burden is over $23 billion annually. Unfortunately, the current options for treatment of such diseases are quite limited, consisting only of bronchodilators and inhaled steroids. The need for a novel and more effective class of therapeutics agents is imperative.

Adjustable Barricade Safety Rail System and Roof Bracket Assembly to Prevent Worker Falls

Falls are the leading cause of death in construction. In 2016, there were 370 fatal falls out of 991 construction fatalities (Bureau of Labor Statistics, Census of Fatal Occupational Injuries data). These deaths are preventable. According to the Occupational Safety and Health Administration, employers must set up the workplace to prevent employees from falling from overhead platforms, elevated work stations, or into holes in the floor and walls.

Synergistic Use of Exo VII Inhibitors And Quinolone Antibiotics For Treating Bacterial Infection

Topoisomerase poisons, such as quinolone antibiotics, are widely used as anticancer drugs and antibiotics. Quinolone antibiotics act by trapping prokaryotic type IIA topoisomerases (DNA gyrase and TOPO IV), resulting in irreversible topoisomerase cleavage complexes. However, current U.S. Food and Drug Administration (FDA) guidance reserves the use of quinolones for the most serious bacterial infections due to their associated side effects and to limit the occurrence of drug-resistant bacterial strains.

Replicating RNA Vaccine For Crimean-Congo Hemorrhagic Fever Virus

Crimean-Congo hemorrhagic fever (CCHF) is a deadly hemorrhagic fever having a high mortality rate. The disease results from infection of an individual by Crimean-Congo hemorrhagic fever virus (CCHFV), which is a tick-borne bunyavirus endemic in Southern and Eastern Europe, Africa, the Middle East, and Asia. Geographically, case distribution is consistent with the range of Hyalomma genus ticks, the main reservoir of CCHFV, and is likely to expand due to climate change. Humans may be infected from tick bites, through contact with infected animals or animal tissue.

A3 Adenosine Receptor Positive Allosteric Modulators

Selective A3AR agonists are sought as potential agents for treating inflammatory diseases,
chronic pain, cancer and non-alcoholic steatohepatitis (NASH). NIDDK investigators have invented 
new chemical composition as positive allosteric modulators (PAMs) of the A3AR. These chemical 
compounds contain sterically constrained, bridged modifications and cycloalkyl rings of various 
sizes, as well as modifications of the 4-arylamino group. The compounds have added 

Engineered Cell-Penetrating Monoclonal Antibody for Universal Influenza Immunotherapy

Influenza remains a burden on public health, as current treatments of viral infections remain ineffective due to frequent virus mutations. Many current influenza treatments rely on targeting surface viral glycoproteins. Unfortunately, these glycoproteins are primary targets of the immune system, which results in increased selection pressure and mutational rate, leading to the well-known seasonal variation of influenza virus.

Cross Species Single Domain Antibodies Targeting PD-L1 for Treating Solid Tumors

Programed Death-Ligand 1 (PD-L1, also known as B7-H1 or CD274) is a cell surface protein that binds to Programmed Cell Death Protein 1 (PD-1, also known as CD279). An imbalance in PD-1/PD-L1 activity contributes to cancer immune escape.  PD-1 is expressed on the surface of antigen-stimulated T cells. The interaction between PD-L1 and PD-1 negatively regulates T cell-mediated immune responses. It has been suggested that disrupting the PD-L1/PD-1 signaling pathway can be used to treat cancers. The aberrant expression of PD-L1 on multiple tumor types supports this suggestion.

T Cell Receptors Targeting KRAS Mutants for Cancer Immunotherapy/Adoptive Cell Therapy

Mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) gene are among the most common oncogenic drivers in human cancers, affecting nearly a third of all solid tumors. Point mutations in the KRAS gene most frequently affect amino acid position 12, resulting in the substitution of the native glycine (G) residue for other amino acids (e.g., aspartic acid (D), valine (V), cysteine (C) or arginine (R)). The mutations in KRAS occur early in the process of carcinogenesis, and only tumor cells express driver mutations, making them an attractive cancer-specific therapeutic target.

Construction of an Infectious Full-Length cDNA Clone of the Porcine Enteric Calicivirus RNA Genome

Porcine enteric calicivirus (PEC) is a member of the genus Sapovirus in the family Caliciviridae. This virus causes diarrheal illness in pigs, and is presently the only enteric calicivirus that can be grown in cell culture. In addition to its relevance to veterinary medicine as a diarrheal agent in pigs, PEC serves as an important model for the study of enteric caliciviruses that cause diarrhea and that cannot be grown in cell culture (including the noroviruses represented by Norwalk virus).