A Rapid Method for Producing Antibodies

Antibodies are specialized proteins produced by the immune system which target and neutralize foreign materials, such as viruses or bacteria. Antibodies have a variety of useful applications in diagnostics, therapeutics, and as research reagents. Despite their widespread use there is no standard method to produce antibodies, and currently available methods are labor and time intensive.

GATA-3 Reporter Plasmids for Revealing Underlying Mechanisms in Breast Cancer

GATA-3 is a transcription factor that is highly expressed in normal cells of the mammary luminal epithelium. GATA-3 plays a regulatory role in determining the fate of cells in the mammary gland. Disruption of GATA-3 expression leads to defects in the development of mammary cells, including an inability to differentiate properly into the correct cell type. GATA-3 function is also disrupted in various breast cancer models indicating that GATA-3 has tumor suppressive properties in normal cells.

Agonist Epitopes for the Development of a Human Papillomavirus (HPV) Therapeutic Vaccine

Human papillomavirus (HPV) has been associated with the cause of several cancer types, including cervical, anal, and head and neck cancers. There has been great success in preventing HPV infections with the development of prophylactic HPV vaccines, Gardasil and Cervarix. However, these vaccines have only been shown to prevent HPV infection and not treat those already infected with HPV. These vaccines elicit antibody responses to late HPV genes, and thus would not be effective in treating established tumors.

T Cell Receptors Targeting BRAF V600E Mutation for Cancer Immunotherapy

BRAF is an oncogene that encodinges a serine-threonine kinase (B-Raf kinase) important in regulating cell growth and differentiation. Spontaneous mutations in the BRAF gene allow cells to continuously divide, leading to the development of cancer. A substitution of glutamic acid for valine at amino acid number 600 (designated V600E) accounts for 90% of BRAF mutations and is a driver of many cancers. The V600E mutation is present in ~3% of all cancer cases, representing a patient population of 540,000 patients per year.

Biomarker Analysis Software for High-Throughput Diagnostic Multiplex Data

Extracellular vesicles (EVs) are lipid bilayer-enclosed particles that are released from cells. EVs may contain proteins derived from their cells of origin with the potential as diagnostic biomarkers indicating the state of the cells when released. However, due to their small size (50-1000nm), the methods currently used to phenotype EVs have limited sensitivity and scale. A need exists for development of novel technologies improving EV detection and phenotyping.

Brain endothelial reporter cells

Aberrant function of the WNT-b-catenin pathway is a common underlying cause of tumorigenesis.  Despite the attractiveness of the WNT-b-catenin pathway as a therapeutic target, WNT dependent cell signaling is also crucial for normal tissue development, and is ubiquitous in all organs.  As a result, WNT-b-catenin pathway inhibitors cause many side effects and fail to meet FDA safety standards.  A more targeted approach is needed to develop safe and effective WNT signaling inhibitors.

Anti-Glypican 2 Chimeric Antigen Receptor (CAR) Containing CD28 Hinge And Transmembrane Domains For Treating Neuroblastoma

Neuroblastomas are the most common extracranial solid tumors in pediatric patients, with 700-800 new cases annually in the United States. Metastatic neuroblastomas have a five-year survival rate of 50% and account for 15% of all pediatric cancer deaths. As such, more effective treatments against high-risk neuroblastomas are urgently needed.

Photoactivatable Lipid-based Nanoparticles as a Vehicle for Dual Agent Delivery

The invention relates to novel lipid-based nanoparticles (liposomes) for use in targeted, on demand and on site drug delivery. The particles include a wall surrounding a cavity, wherein the wall is comprised of:

  1. A lipid bilayer comprising 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC), dipalmitoylphosphatidylcholine (DPPC), and 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000), and

Strategies to Protect Mammalian Neural Tissue Against Cold and Potentially Other Metabolic Stresses and Physical Damages

Researchers at the National Eye Institute (NEI) have discovered an invention describing a composition and method(s) of using such composition for preserving viability of cells, tissues, or organs at a low temperature (around 4ºC). Current cold storage solutions or methods for cells, tissues, and organs are suboptimal due to irreversible damage to cold-sensitive tissue or organ transplants that need a longer term of storage for facilitating clinical practices.

T Cell Receptors Targeting CDKN2A Mutations for Cancer Immunotherapy

Cyclin-dependent kinase inhibitor 2A gene, also known as CDKN2A, is a tumor suppressor gene and is commonly inactivated through somatic mutations in many human cancers. For example, inactivation of CDKN2A is highly prevalent in melanoma, gastrointestinal and pancreatic cancers. Through germline mutations, CDKN2A is associated with predisposition for a variety of cancers, including melanoma and pancreatic cancers. Despite the high frequency of CDKN2A mutations in cancer, there have been no successful therapies targeting these mutations to date.