Francisella Lipids as Broad Anti-inflammatory Therapeutics

Anti-inflammatory treatments, particularly those used in the context of viral infection, have been shown to greatly inhibit the overall immune response, which can result in poor immunity and failure to control or clear the infection. Novel alternatives that can effectively attenuate inflammation without the more serious side effects of steroid medications (e.g., global immune suppression, muscle weakness, etc.) may have substantial use across a wide range of disease areas.

The Use of alpha-4 beta-7 integrin Inhibitors to Inhibit HIV Transmission and Infection

This invention involves the use of inhibitors of alpha-4 beta-7 (a4b7) integrin to inhibit HIV transmission/infection, as a prophylactic to inhibit onset of the acute stage of HIV infection or to treat HIV infection. The a4b7 integrin inhibitors were previously developed for use in other diseases, such as multiple sclerosis or inflammatory bowel disease.

Broadly Neutralizing Human Anti-HIV Monoclonal Antibody 10E8 and Related Antibodies Capable of Neutralizing Most HIV-1 Strains

The uses for human anti-HIV monoclonal antibody 10E8 and its variants include passive immunization, therapeutic vaccination, and the development of vaccine immunogens. 10E8 is one of the most potent HIV-neutralizing antibodies isolated and it neutralizes up to 98% of diverse HIV-1 strains. 10E8 is specific to the membrane-proximal external region (MPER) of the HIV envelope protein gp41 and 10E8 is orthogonal to other anti-HIV antibodies. In combination with other antibodies 10E8 may provide an antibody response that neutralizes nearly all strains of HIV-1.

N6, A Novel, Broad, Highly Potent HIV-specific Antibody

This is a new antibody coming out of NIAID’s intramural program. N6 has evolved a unique mode of binding that depends less on a variable area of the HIV envelope known as the V5 region and focuses more on conserved regions, which change relatively little among HIV strains. This allows N6 to tolerate changes in the HIV envelope, including the attachment of sugars in the V5 region, a major mechanism by which HIV develops resistance to other VRC01-class antibodies. N6 was shown in pre-clinical studies to neutralize 98 percent of HIV isolates tested.

Recombinant Sulfated HIV Envelope Protein and Methods for Making Protein

This technology comprises sulfated recombinant gp120 proteins and peptides. Also included are methods for producing sulfated recombinant gp120 proteins. The focus of this technology is on sulfation of two tyrosines in the V2 loop of the HIV major envelope glycoprotein, gp120, which increase the stability of gp120 and promote the synthesis of gp120 protein in its native "closed" conformation. Gp120 in its native form is highly sulfated; however, recombinant gp120 produced for vaccines or structural analyses typically display low levels of V2 tyrosine sulfation.

Continuous Cell Lines Persistently Expressing High Levels of Native HIV-1 Envelope Trimers on their Surface Membrane

Transduced human cell lines expressing high levels of native HIV-1 Envelope on their surface membrane, in the unmodified or interdomain stabilized form. These cell lines provide a stable source of native HIV-1 envelope for multiple uses, including the high-efficiency production of virus-like particles (VLPs) for use as vaccines, testing new inhibitors or neutralizing antibodies, or identifying/capturing B cells that produce broadly neutralizing antibodies from infected/vaccinated humans or animals.

Improvement of Broadly HIV-Neutralizing Antibodies; Anti-HIV-1 Antibody VRC01.23 for Prevention or Treatment of HIV Infection

Scientists at NIAID have developed broadly neutralizing antibodies (bNAbs) with enhanced neutralizing activity against HIV-1. Specifically, previously unknown gp120 interactions with a newly elucidated quaternary receptor (CD4)-binding site in the HIV-1 envelope have been discovered by engrafting the extended heavy-chain framework region 3 (FR3) loop of VRC03 onto several potent bNAbs (including VRC01, VRC07 and N6).

Replication-Competent Adenovirus Type 4 SARS-CoV-2 Vaccines and Their Use

NIAID has produced recombinant adenovirus type 4 (Ad4), SARS-CoV-2 spike, vectors for administration to humans. These recombinant vaccines permit rapid development of high levels of neutralizing antibodies to SARS-CoV-2 in experimental animals. This vaccine is designed to improve the durability of the immune response by inducing mucosal and systemic immunity. Further, this system should be incredibly simple and efficient when producing vaccine at scale. This technology is available for licensing for commercial development in accordance with 35 U.S.C.

Humanized Murine Monoclonal Antibodies That Neutralize Type-1 Interferon (IFN) Activity

Interferons (IFNs) are a family of cytokines that function in response to an immune challenge such as a viral or bacterial infection. Type I IFNs are produced by immune cells (predominantly monocytes and dendritic cells) as well as fibroblasts and signal through a specific cell surface receptor complex (IFNAR) that consist of IFNAR1 and IFNAR2 chains. Type-I IFNs exert several common effects including antiviral, antiproliferative, and immunomodulatory activities. However, Type I IFNs also have pro-inflammatory effects, especially in the presence of TNF-a.

Replication-Competent Adenovirus Type-4 HIV Env Vaccines and Their Use

NIAID, IAVI, Emergent, and Scripps have developed two recombinant adenovirus type 4 (Ad4) vector-based vaccine candidates. These replicating Ad4 vector-based candidates have shown improved activity against tier 2 HIV-1 isolates in experimental animals. Tier 2 isolates are among the most prevalent in infected populations. The two candidates, Ad4-Env150KN and Ad4-Env145NFL, incorporate novel design features based on Ad4-EnvC150 (1086c). Specifically, the truncation of the cytoplasmic tail of Env increases cell surface expression and has resulted in improved antigenicity from both candidates.