A Novel Reagent for Labeling PET Tracers at Trifluoromethyl Groups

The molecular imaging technique of positron emission tomography (PET) is an increasingly important tool in biomedical research and in drug discovery and development. Many small molecule drugs and potential PET radiotracers carry trifluoromethyl (CF3) groups. Because CF3 groups are generally considered to be metabolically stable, there is a strong interest in developing drugs with these groups.

Real-time PCR Detection of <em>Streptococcus pneumoniae</em> with High Sensitivity and Specificity

Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and is also a frequent cause of bloodstream, brain and spinal cord, ear, and sinus infections. According to 2015 CDC data, an estimated 900,000 Americans get pneumococcal pneumonia each year and approximately 5-7% die from it annually. Accurate diagnosis and early treatment are important for improving patient outcomes.

Prefusion HPIV F Immunogens and Their Use.

Human parainfluenza virus (hPIV) is an RNA-based paramyxovirus that causes respiratory infections in children and adults. There are four serotypes that can result in a myriad of diseases of the respiratory tract including croup, bronchitis, and pneumonia (Mao et al., 2012). hPIV is a leading cause of respiratory tract infection and hospitalization among children under 5, only surpassed by the respiratory syncytial virus (RSV). Currently, there are limited treatment options and no approved vaccines.

Licensing Availability: Methods of Diagnosing and Treating CHAPLE, A Newly Identified Orphan Disease

This technology is directed towards a potential treatment for a new disease, CHAPLE (Complement Hyperactivation, Angiopathic thrombosis, and Protein-Losing Enteropathy), identified by NIAID researchers. CHAPLE is associated with GI symptoms and vascular thrombosis and is caused by loss-of-function variants in the gene encoding the complement regulatory protein CD55. The disease is caused by enhanced activation of the complement pathway and complement-mediated induction of intestinal lymphangiectasia and protein-losing enteropathy.

Glycan-masked engineered outer domains of HIV-1 GP120 and Their Use

The VRC01-class of potent, broadly neutralizing antibodies (bnAbs) targets the conserved CD4-binding site (CD4bs) of HIV-1 Env which has been a major target of HIV-vaccine design. The current best priming immunogen to engage the VRC01-class germline precursors is the eOD-GT8 60mer, which elicits VRC01-class precursors in multiple transgenic mouse models. However, a large proportion of the antibodies elicited by eOD-GT8 60mer are non-CD4bs or “off-target” antibodies, undermining its effectiveness in eliciting the VRC01-class bnAb precursors.

Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP as an Intranasal Ebola Vaccine

Ebola virus (EBOV) hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. EBOV is transmitted by contact with body fluids from infected individuals including droplets or aerosols. Aerosolized EBOV could also be exploited for intentional virus spread. Therefore, vaccines that protect against mucosal and systemic exposure are needed.

A New Class of Immunomodulatory Drugs for Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune disease caused by activated autoimmune T lymphocytes in patients resulting in inflammatory demyelination in the central nervous system. Current treatments are focused on functional control of these activated autoimmune T cells, but these treatments are non-specific T cell inhibitors and have serious, sometimes fatal side effects. A specific therapy aimed at eliminating these autoimmune T cells through restimulation-induced cell death (RICD) could cure the disease and overcome the fatal side effects of current therapies.

Recombinant RSV B1 expressing eGFP as a reporter gene

The inventors have created a reverse genetics system for RSV strain B1 of antigenic subgroup B encoding a replication-competent recombinant RSV that contains a codon-optimized G ORF and expresses enhanced green fluorescence protein (GFP). There are two antigenic subgroups of RSV, subgroups A and B, and most of the available information and reagents are for subgroup A. Immunity against either subgroup has reduced effectiveness in restricting the heterologous subgroup, suggesting that an effective RSV vaccine might need to contain both subgroups.

Recombinant HIV-1 Envelope Protein for Vaccine Use

In pursuit of an effective vaccine to end the global HIV-1/AIDS pandemic, researchers at the Vaccine Research Center (“VRC”) continue to study the structure of HIV-1. Recently, these researchers have determined the three-dimensional structure of the HIV-1 Envelope trimeric ectodomain (“Env”), comprised of three gp120 and three gp41 subunits, in its prefusion, mature, closed conformation.

Hybridoma cell lines producing antibodies to RSV NS1

This technology provides a new set of hybridoma cell lines each expressing a single monoclonal antibody against human respiratory syncytial virus (RSV) nonstructural protein 1 (NS1). These antibodies have variously been shown to detect NS1 protein in an enzyme-linked immunosorbent assay (ELISA), Western blot assay, immunofluorescence microscopy of paraformaldehyde-fixed cells, and flow cytometry. The various antibodies can vary in their efficiency in each of these assays.