T-cell Phenotypes Associated with Clinical Response to Adoptive Immunotherapy

Adoptive T-cell therapy (ACT) utilizes tumor-reactive T cells to induce disease remission. While ACT has been used effectively to treat metastatic melanoma and certain epithelial cancers, most patients do not respond to treatment. Although the mechanisms underlying this variable response to therapy are not fully elucidated, the phenotype of the adoptively transferred cell is known to be a key determinant of treatment efficacy.

Enhanced Immunogenicity Against HIV-1 Using a DNA-prime Poxvirus Vaccination

Researchers at the National Cancer Institute (NCI) have developed a method of stimulating an immune response in humans at risk for infection by, or already infected with, an Human Immunodeficiency Virus (HIV)-1 retrovirus. This method utilizes deoxyribonucleic acid (DNA) vaccines to stimulate CD8+ T cell immune responses. The DNA vaccine encodes antigens known to be effective against retroviruses, such as HIV-1gag, gp120, nefCTL, and proCTL. The same antigens are also expressed by the pox virus vaccine, which elicits an increased immune response when combined with the DNA vaccine.

Clinical Outcome Predictors for Mantle Cell Lymphoma

Mantle cell lymphoma (MCL) is a group of aggressive B-cell lymphomas displaying heterogeneous outcomes after treatment.  Some patients have the slowly progressing disease that does not require immediate treatment, while others have a disease that rapidly progresses despite highly aggressive treatment. A number of prognostic tools have been described to determine whether patients have slow or rapidly progressing diseases, including the mantle cell lymphoma International Prognostic Index (MIPI) and biomarkers, such as KI-67.

Magnetic Resonance Specimen Evaluation Using Multiple Pulse Field Gradient Sequences

Researchers at the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) developed an MRI-method that is based on the acquisition of multiple pulsed field gradient (m-PFG) rather than single-pulsed field gradient (s-PFG) MRI sequences. In particular, double PFG (dPFG) MRI sequences offer higher sensitivity and greater robustness, as they are more sensitive to the effects of “restriction;” i.e., to water trapped within the axon’s intracellular space, and thus to the diameter of the axons.

The UBE2G2 Binding Domain in the Ubiquitin Ligase GP78 and Methods of Use Thereof

Cancer is the second leading cause of death worldwide. The primary cause of mortality from cancer is metastasis. While the underlying mechanisms of cancer metastasis are still being unraveled, the gp78 protein involved in ER-associated degradation (ERAD) appears to play a role in metastasis in sarcoma. Targeting gp78 may be a therapeutic option in cancer treatment.

Sensitizing Cancer Cells to DNA Targeted Therapies

Chk2 is a protein kinase activated in response to DNA double strand breaks. In normal tissues, Chk2 phosphorylates and thereby activates substrates that induce programmed cell death, or apoptosis, via interactions with p53, E2F1, PML proteins. In cancer tissues, where apoptosis is suppressed, Chk2 phosphorylates and inactivates cell cycle checkpoints (via interactions with Cdc25, phosphatases and Brca1 proteins), which allows cancer cells to repair and tolerate DNA damage.

Use of Interleukin (IL)-34 to Treat Retinal Inflammation and Neurodegeneration

Interleukin (IL)-34 is a homodimer that is produced mainly by keratinocytes, neuronal cells and regulatory T cells (Tregs). It is believed to play important roles in chronic inflammation and the homeostasis of microglia. Currently, there is no effective treatment for many types of retinal degeneration. An improved treatment of autoimmune uveitis is also needed, as current uveitis treatment primarily uses steroidal anti-inflammation medication, which may produce significant unwanted side effects in long-term use.

A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences

Tumors can develop unique genetic mutations which are specific to an individual patient. Some of these mutations are immunogenic; giving rise to autologous T cells which are tumor-reactive. Once isolated and sequenced, these neoantigen-specific TCRs can form the basis of effective adoptive cell therapy cancer treatment regimens; however, current methods of isolation are inefficient. Moreover, the process is technically challenging due to TCR sequence diversity and the need to correctly pair the a and b chain of each receptor.

Hydrocarbon Stapled Peptides that Inhibit the Linear Ubiquitin Chain Assembly Complex (LUBAC) for the Therapy of the Activated B Cell-like (ABC) Subtype of Diffuse Large B Bell Lymphoma (A Type of Non-Hodgkin’s Lymphoma)

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin’s lymphoma and consists of three subtypes: activated B-cell (ABC), germinal center B-cell (GBC), and primary mediastinal B-cell (PMB). Despite advances in the front-line therapy for DLBCL, approximately one-third of patients will relapse. Substantially worse outcomes have been reported for patients diagnosed with ABC DLBCL and treated with standard chemoimmunotherapy, suggesting the need for novel strategies that improve treatment outcomes.